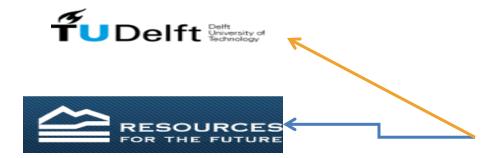
Nanotechnology: a new emergent technology addressing uncertainties in risk assessment through structured expert opinion elicitation


USDA Risk Forum 3rd December 2010

Rabin Neslo

Villie Flari

- **Start** on 12/2008
- ★ CFSAN, FDA USA: Villie's secondment from Fera
 - + Initial point:
 - × Interagency Risk Assessment Consortium (IRAC)
 - × Led IRAC working group on "Nanotechnology and Risk Assessment"
- **Since** 11/2009
- × Fera, Defra UK
 - × Cross programme collaboration
 - × Partially funded by MoniQA European Union network of excellence

A joint effort that brings on board expertise from different fields

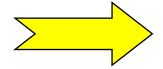
Mr **Rabin Neslo -** Applied Mathematician Post-graduate student.

Prof **Roger Cooke -** Mathematician, Philosopher Expert in uncertainty analysis & expert opinion elicitation.

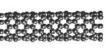
PEOPLE

Dr **Qasim Chaudhry -** Chemist, Biochemical Toxicologist. Expert in nanotechnology field.

Dr Villie Flari - Risk Analyst, Biologist Specialized in structured methodologies to elicit expert judgment and in communication of scientific uncertainties.


Interagency Risk Assessment Consortium

Lead of working group on "Nanotechnology and Risk Assessment"


Nanotechnologies - potential benefits

BACKGROUND

- ✓ Less use of chemicals (e.g. catalysts, paints & coatings)
- ✓ Novel functional materials (e.g. packaging, construction)
- Healthy food products (e.g. less use of fat, salt, preservatives);
- ✓ Longer shelf-life of foodstuffs;
- ✓ Improved health and wellbeing (greater bioavailability of nutrients & supplements)
- Nano(bio)sensors for diagnostics and monitoring
- Cleanup of contaminated environments
- ✓ Water desalination and decontamination
- Nano-medicines (targeted drug delivery)

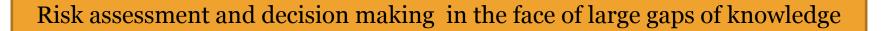
Sector Applications

BACKGROUND

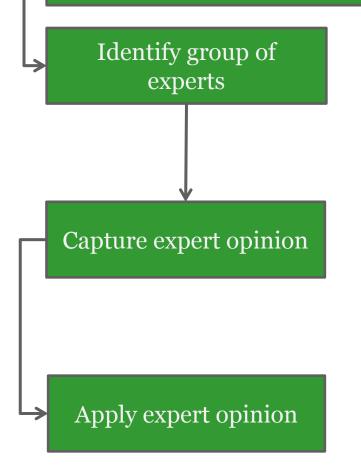
- Cosmetics and personal care products
- Paints & coatings
- Catalysts & lubricants
- Security printing
- Textiles & sports
- Medical & healthcare
- Food and nutritional supplements
- Food packaging
- Agrochemicals
- Veterinary medicines
- Water decontamination
- Construction materials
- Electrical & electronics
- Fuel cells & batteries
- Paper manufacturing

Challenges

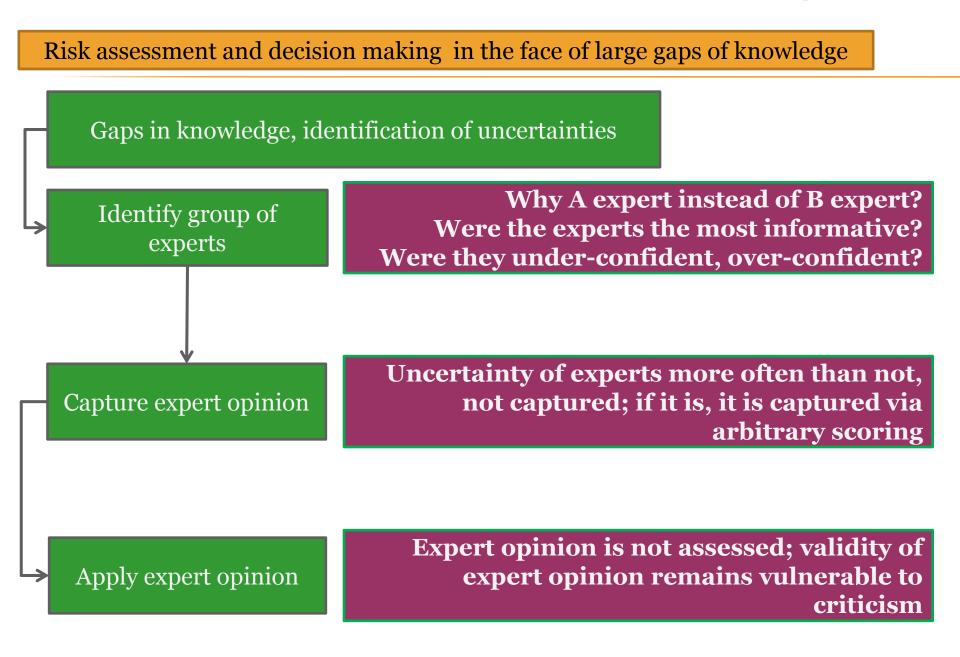
Risk assessment and decision making in the face of large gaps of knowledge

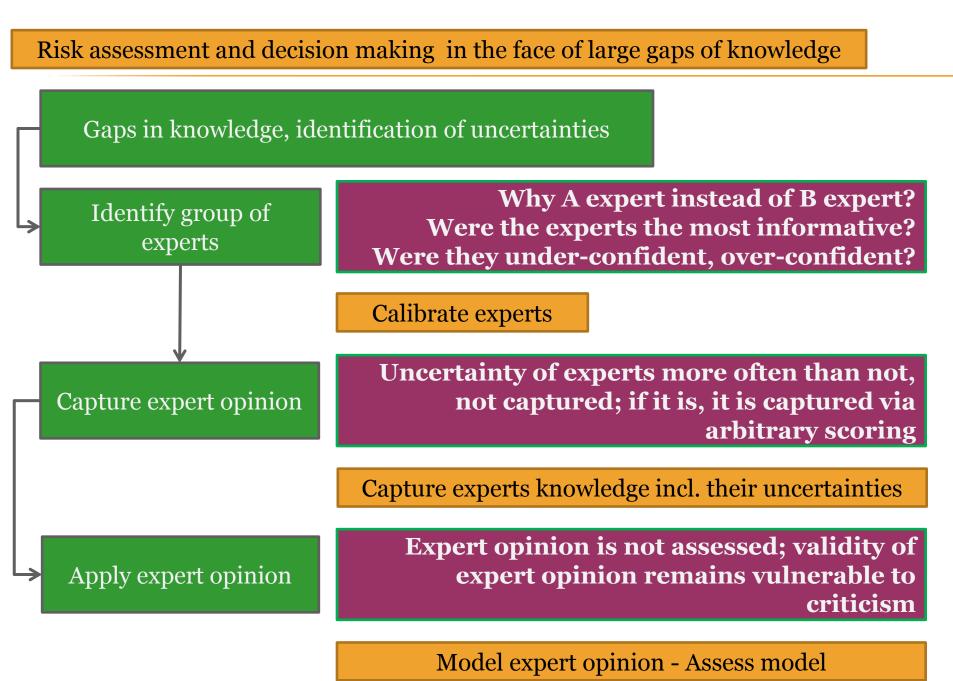

- Safety of nanomaterials to human health and the environment
- Technological challenges detection/ characterisation, toxicological evaluation of nanomaterials
- Societal issues ownership of benefits, responsibilities, liabilities
- × Policy and regulatory issues
- Major knowledge gaps will require a long time to address

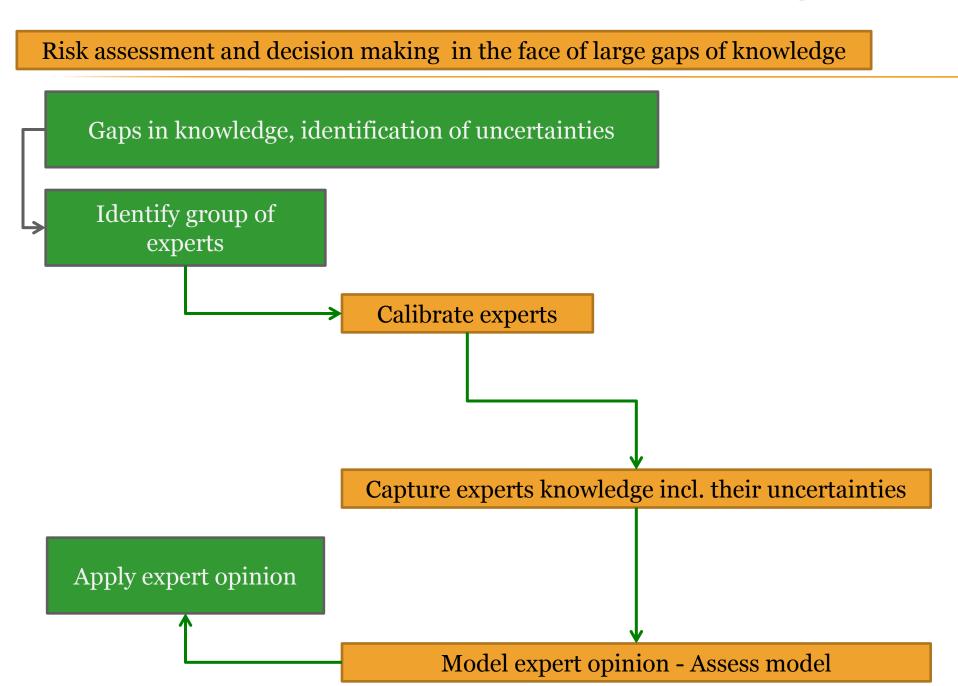
Challenges

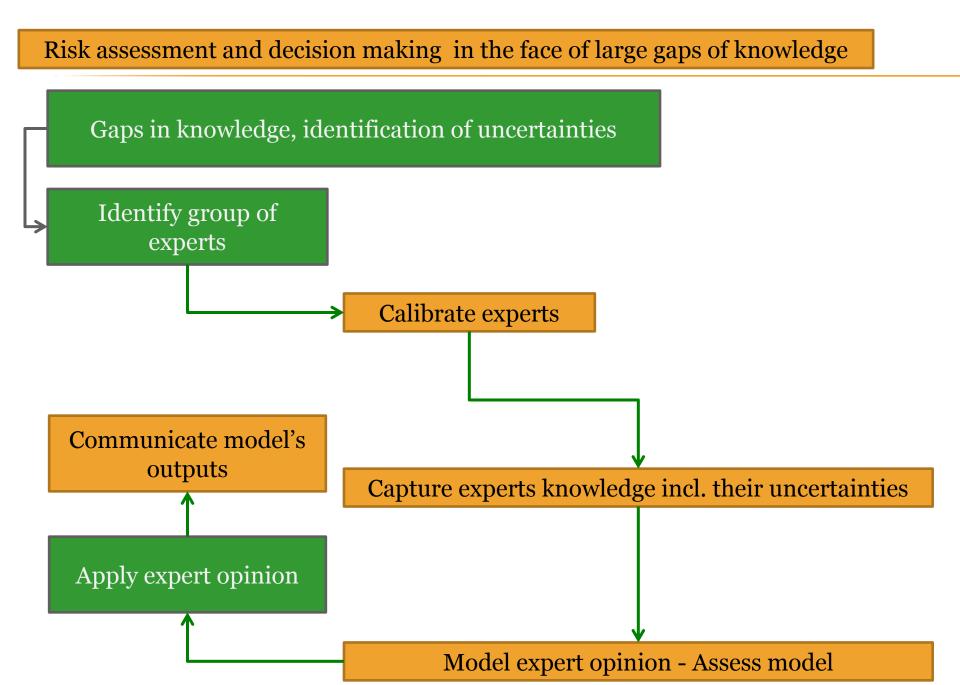

Risk assessment and decision making in the face of large gaps of knowledge

- × This level of uncertainty requires expert judgment
- Experts' judgment will vary: some will think from the exposure point of view, others from hazard point of view, etc.
- Coherent way to capture experts' knowledge on known and unknown?


EXPERT JUDGMENT – STATUS QUO


Gaps in knowledge, identification of uncertainties


EXPERT JUDGMENT - QUESTIONS


EXPERT JUDGMENT – ADDRESS QUESTIONS

EXPERT JUDGMENT – ADDRESS QUESTIONS

EXPERT JUDGMENT – ADDRESS QUESTIONS

EXPERT JUDGMENT PROTOCOL

The method models **expert knowledge (rankings)** by employing probabilistic inversion.

(in our case 21 **experts** on **nanotechnology research in the food sector**)

(in our case **rankings** on 26 **hypothetical nanotechnology-enabled food products**)

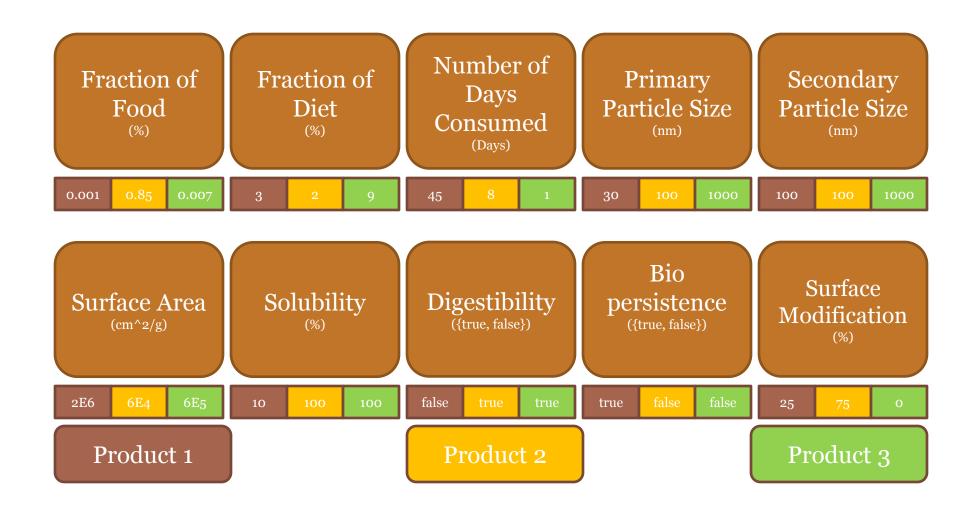
STEP 4: ELICITATION

STEP 3: IDENTIFY & RECRUIT EXPERTS

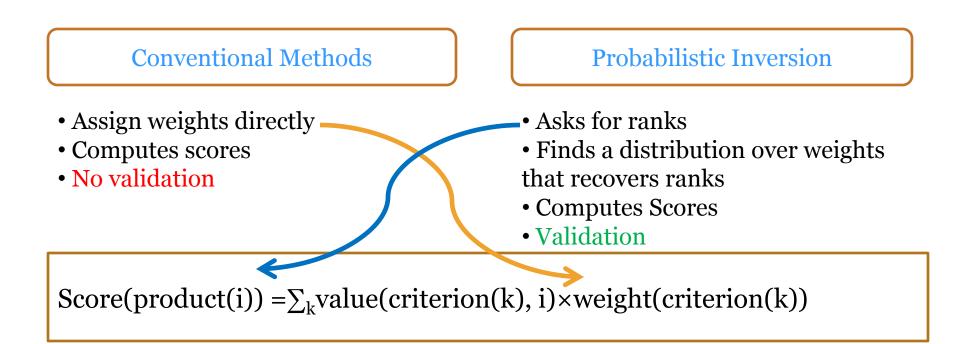
These **hypothetical nanotechnologyenabled food products** are **precisely defined** (by us) via a number of **criteria** or attributes.

STEP 2: SCENARIOS

In our case these **criteria** are a number of **attributes** that are considered as **significant** in order to **assess/evaluate potential risk considerations** of **nanotechnology-enabled food products**.

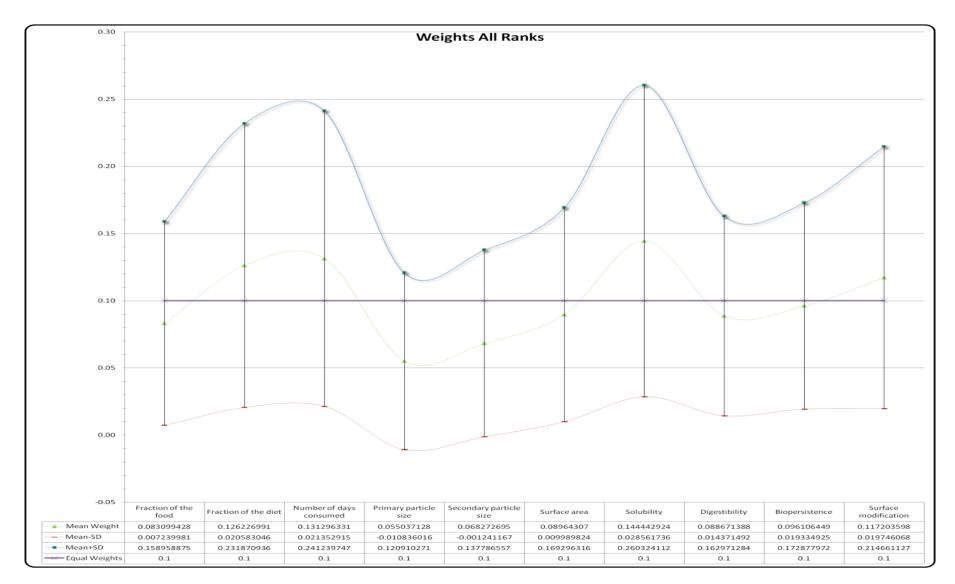

STEP 1: CRITERIA

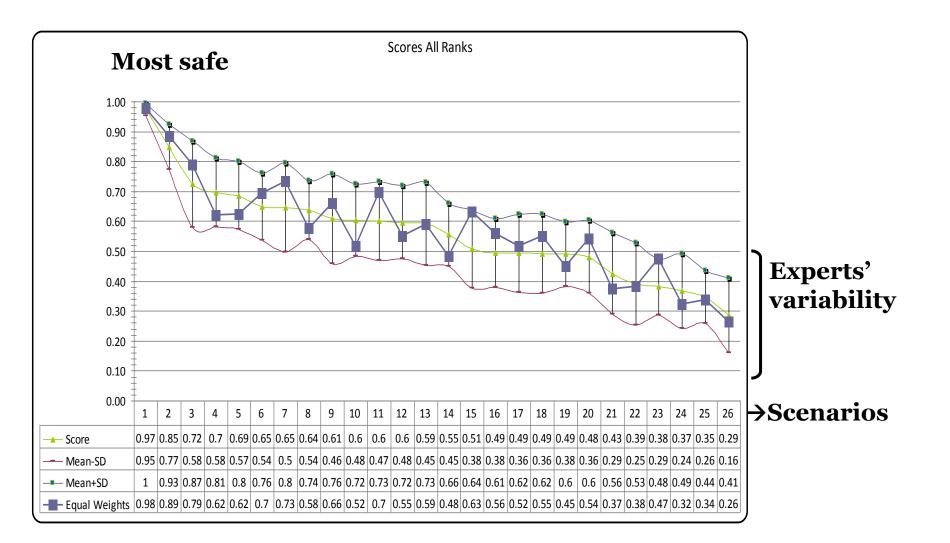
MOTIVATION


× What is the problem?

- + Large number of nanotechnology-enabled products, either in the market or being developed
- + Safe or not safe?
- + Classic paradigm of risk assessment possible, but...
- + ..lack of data expert judgment unavoidable
- × Possible solution
 - + Identify most important criteria for assessing risk/safety
 - + Create a screening tool

THE CRITERIA


MULTI CRITERIA DECISION MODEL (MCDM)


VALIDATION

- Checks if experts' ranks are recovered from the distribution over weights
- × Splits experts' ranks in a training set and a validation set
 - + Solves model using training set
 - + Tries to recover ranks in the validation set

RESULTS - MODELLING EXPERT JUDGMENT

RESULTS - MODELLING EXPERT JUDGMENT

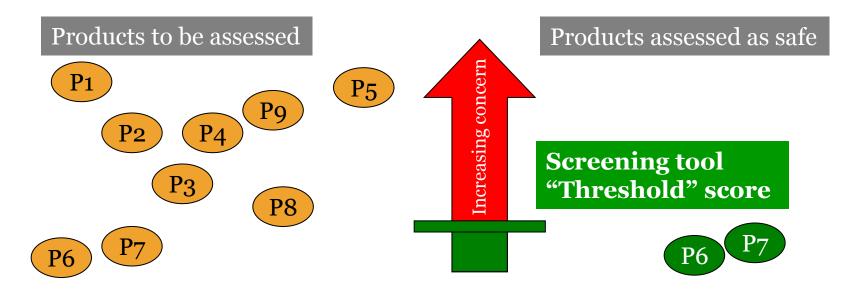
RESULTS - MODELLING EXPERT JUDGMENT

	Rank	Scenarios	Scores	Fraction of the food	Fraction of the diet	Number of days consumed	Primary particle size	Secondary particle size	(Agglomerat ion)	Surface area	Solubility	Digestible	Bio persistent	Surface modification
e	1	М	0.974	0.007	9	1	1000	Non aggle	omerated	6	100	Yes	No	0
/ safe	2	J	0.849	0.001	10	256	1000	Non aggle	Non agglomerated		80	Yes	No	0
ially	3	W	0.724	0.005	5	5	1000	Non agglomerated		6	0	Yes	No	100
Potentially	4	E	0.696	0.85	2	8	100	Non agglomerated		60	100	Yes	No	75
Po	5	L	0.686	0.9	5	50	30	100	30	200	100	Yes	No	0
afe	22	С	0.391	0.006	5	200	30	100 30		200	10	No	Yes	0
unsafe	23	0	0.381	0.001	15	277	100	250	100	60	10	No	Yes	25
ally	24	K	0.367	0.001	10	50	30	Non aggle	Non agglomerated		10	No	Yes	50
Potentially	25	G	0.347	0.001	8	243	100	Non aggle	Non agglomerated		10	No	Yes	75
Pot	26	Z	0.286	0.001	9	360	30	Non aggle	omerated	200	10	No	Yes	25

- × International experts' workshop held on May 2010 at Fera, York, UK
- **×** Experts were divided into three breakout groups
- Each breakout group devised hypothetical products that they considered either as safe or unsafe
- × External validation of the model
 - + We ranked these products with our model
 - + Then compared the models' rankings with the expert rankings

		Description of the product
H	P1	Nano salt applied as a surface seasoning on crisps.
Group	P2	ZnO in low fat spreads as an antimicrobial agent.
	P3	Food colouring; Al_2O_3 to provide blue colour in children's shakes.
0	P4	Nanopesticide as a residue on cereals.
	P1	Milk processed to cause a fraction of the protein content to encapsulate the lactose, forming non-digestible nano-encapsulates that render the lactose non-bioavailable and so makes the milk suitable for lactose-intolerant individuals. The milk is unchanged in all other aspects.
p 2	P2	Skimmed (low-fat) milk processed in a way to change the fat droplets to become nano- sized and so make the milk have a more full-fat creamy mouth feel. The milk is unchanged in all other aspects.
Group	P3	Vitamin D encapsulated in protein that is extracted from milk, and dispersed into soft drinks. The encapsulation makes the vitamin compatible with the drink but it is readily digested to liberate the vitamin in vivo.
	P4	A nano form of iron that resists digestion but can be taken-up and then enter cells directly and then liberate iron, thus giving greater bioavailability. The application would aim to fortify breakfast cereals.
	P5	Nano gold used to coat an ice cream and so colour it.
p 3	P1	Non digestible nanolipid in sausage to suppress appetite; the application is non water soluble, non digestible, and non bio-persistent.
Group	P2	Nano TiO2 in cake icing and sweets. The application is non water soluble, non digestible.
5	P 3	Nano carotene in margarine.

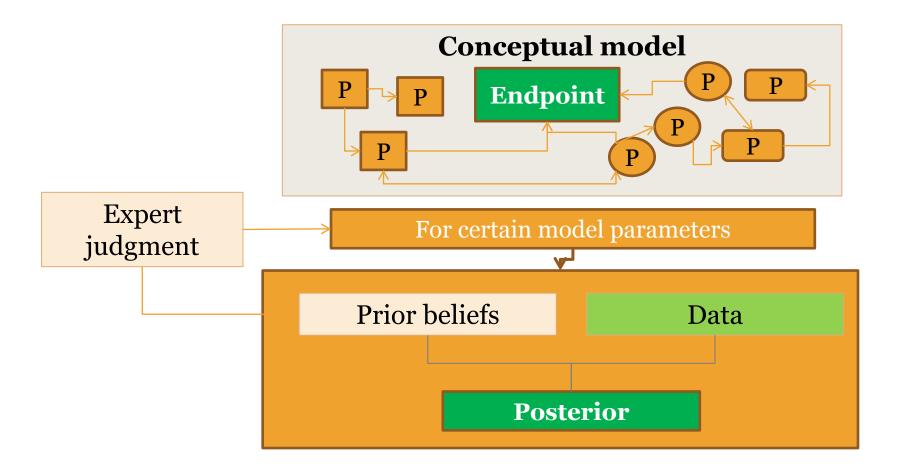
		Score calc							
		Potentially safe rankings		Potential unsafe ra	lly ankings	All rankir (potentia) + potentia unsafe)	lly safe	g equal or	g of s in terms safety by in breakout
		IIA	Most commo n (>0.1)	All	Most commo n (>0.1)	III	Most commo n (>0.1)	All ranks assuming equal weights for criteria	
1	P1		•	•	•	•		1	1
Group	P2							2	2
Gro	P3							4	3
	P4							3	4
	P1							2	3
2	P2							1	1
Group	P3							5	2
9	P4							3	4
	P5							4	5
dı	P1							2	2
Group 3	P2							3	3
9	P3							1	1


		Score calc							
		Potentially safe rankings		Potentially unsafe rankings		All rankir (potentia + potentia unsafe)	lly safe	s equal or	g of s in terms safety by in breakout
		IIA	Most commo n (>0.1)	All	Most commo n (>0.1)	II	Most commo n (>0.1)	All ranks assuming equal weights for criteria	Ranking of products in terms of their safety by experts in breako groups
1	P1	1	1					1	1
Group	P2	2	2					2	2
CLO	P3	3	3					4	3
•	P4	4	4					3	4
	P1	2	2					2	3
2	P2	1	1					1	1
Group	P3	4	5					5	2
3	P4	3	3					3	4
	P5	5	4					4	5
dı	P1	2	2					2	2
Group 3	P2	3	3					3	3
9	P3	1	1					1	1

		Score calculated by fitting the model on:										
	Potentially safe rankings		Potentially unsafe rankings		All rankir (potentia) + potentia unsafe)	lly safe	ç equal or	g of s in terms safety by in breakout				
		IIA	Most commo n (>0.1)	All	Most commo n (>0.1)	All	Most commo n (>0.1)	All ranks assuming e weights for criteria	Ranking of products in terms of their safety by experts in breakou groups			
1	P1	1	1	1	1			1	1			
dn	P2	2	2	2	2			2	2			
Group	P3	3	3	4	4			4	3			
<u> </u>	P4	4	4	3	3			3	4			
	P1	2	2	2	2			2	3			
ณ	P2	1	1	1	1			1	1			
Group	Р3	4	5	5	4			5	2			
G	P4	3	3	3	3			3	4			
	P5	5	4	4	5			4	5			
Group 3	P1	2	2	2	2			2	2			
	P2	3	3	3	3			3	3			
9	P3	1	1	1	1			1	1			

		Score calculated by fitting the model on:										
		Potentially safe rankings				All rankir (potentia) + potentia unsafe)	lly safe	ç equal or	g of s in terms safety by in breakout			
		All	Most commo n (>0.1)	All	Most commo n (>0.1)	II	Most commo n (>0.1)	All ranks assuming equal weights for criteria	Ranking of products in terms of their safety by experts in breako groups			
1	P1	1	1	1	1	1	1	1	1			
	P2	2	2	2	2	2	2	2	2			
Group	P3	3	3	4	4	4	3	4	3			
0	P4	4	4	3	3	3	4	3	4			
	P1	2	2	2	2	2	2	2	3			
ର	P2	1	1	1	1	1	1	1	1			
Group	P3	4	5	5	4	5	5	5	2			
3	P4	3	3	3	3	3	3	3	4			
	P5	5	4	4	5	4	4	4	5			
Group 3	P1	2	2	2	2	2	2	2	2			
	P2	3	3	3	3	3	3	3	3			
	P3	1	1	1	1	1	1	1	1			

APPLICATION AS A SCREENING TOOL


How could such results feed in the challenge of risk assessment of nanotechnology-enabled food products?

• a tiered approach of ranking/sieving nanotechnology-enabled food products could be applied.

PRODUCTS CONSIDERED UNSAFE

- **×** More customised screening decision making tools possible
- **×** Possible that risk assessment should be done case by case

WAYS FORWARD

× Model appears promising

- + Method was applied to other problems
- + It is dynamic process; "shelf life" of the model
- + The most important part is defining the right criteria for each model
- × More research, funding, needed
 - + Continuation of MoniQA funding 2011
 - + Possible international collaboration with end users (e.g. policy makers, regulators, risk assessors, industry)

× Dr Villie Flari

 Food and Environment Research Agency, York, UK

+ villie.flari@fera.gsi.gov.uk

× Ir Rabin Neslo

+ University of Delft, the Netherlands

+ R.E.J.Neslo@tudelft.nl