[image: image1.jpg]
HTML Coding Standard

United States Department of Agriculture (USDA) eGovernment Program

HTML/ASP Coding Standards
DRAFT

April 29, 2003

Contents

31.
Overview

31.1.
Purpose

41.2.
Conventions

41.3.
Source Code

51.4.
File names

62.
Programming Structures

62.1.
HTML Tags

62.2.
HTML Tag Parameters

72.3.
Path Names

83.
Formatting

83.1.
Indentation

93.2.
Heading Tags

93.3.
Underline Tags

93.4.
List Tags

103.5.
Table Tags

113.6.
Frame Tags

113.7.
Form Tags

124.
Comments

124.1.
Code Commenting Conventions

124.2.
Section Heading Comment Contents

134.3.
Inline Comments

145.
Section 508

145.1.
Rehabilitation Act

145.2.
Use text equivalents for non text elements

165.3.
Provide alternatives to information conveyed by color

165.4.
Row and column headers shall be identified for data tables.

176.
ASP Best Practices

176.1.
Constant Naming Conventions

176.2.
Variable Naming Conventions

176.3.
Variable Scope

186.4.
Variable Scope Prefixes

186.5.
Descriptive Variable and Procedure Names

196.6.
Object Naming Conventions

1. Overview

The purpose of this guide is to provide a set of coding standards and recommendations for producing structured, reliable and maintainable documents in the Hypertext Mark-up Language (HTML) for the USDA prototype. This is not intended to be an all-encompassing guide that defines standards to produce correct HTML programs.
1.1. Purpose
The most important piece of good programming is that the final script or code must be easy to read, understand and reusable. To reinforce this concept, it is paramount that there is a set of well defined standards or procedures at the beginning of the development process, and to all developers to create quality code.
If the standards or procedures are consistently applied to the daily development process, a scalable solution with high levels of reusability and ease of maintenance will be created.
The clarity of the code has a direct impact in the comprehension of the system by developers. Having easily maintained code means having code where it is easy to add new features, modify existing ones, correct bugs and improve performance.

Standards, norms and procedures are important for programmers due to the following reasons:
· Codes will be used or modified during maintenance phase.
· Rarely is software is maintained by its original author;

· Standards, norms and procedures increase readability and comprehension, allowing programmers to understand new code faster and in more depth.
1.2. Conventions

In this guide, standards are presented as follows:

· Tags – All tags contained within another tag that can’t fit on one easily visible line should be indented. More detail in Formatting section of this document. The exceptions are <html> and <body> tags.

· Text within Tag – If all of the text within a tag cannot easily fit within one visible line, then it should be indented on lines between the start and end tags.

· Blank line – A blank line may only appear immediately preceding a line containing a comment. There should never be more than one space in a row, except for indenting.
1.3. Source Code

Defining a standard source file layout makes it easier to understand and maintain code created by other programmers.

The standard file template is the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/strict.dtd">
<html xmlns="http://www.w3.org/TR/xhtml1">
 <head>
 <!---
 HtmlFilename.html
 =================

 <Description of the html page>

 @$Author: $

 @$Revision: $

 @$Date: $

 --->
 <meta name="author" content="Original Author" />
 <meta name="created" content="Dec. 22, 2000" />
 <title>
 My title
 </title>
 </head>
 <body>
 <!-- put body here -->
 </body>
</html>
Note that the document is declared XHTML 1.0 compliant and that meta tags are used to identify the developer and the version of the file. The following table describes the above information in detail.
	Information
	Description

	<file name>
	Name of the file

	@$Author: $
	Name of the author that made the modification

	@$Revision: $
	Alteration version number

	@$Date: $
	Date of the alteration

	<author name>
	Name of the original author of the file

	<creation date>
	Date of creation (in the format YYYY/MM/DD)

1.4. File names

HTML pages should be given names that help explain their functionality. Names should be all lower case letters and “_” instead of space. There should never be more than two “_” and must all have a .html extension. All names should be start with USDA or the agency name.

Example:
“usda_home.html” or “usda_loan_home.html”
2. Programming Structures
2.1. HTML Tags

The following guidelines should be used for all HTML tags.

· All HTML tags and attributes should be lower case. This is required to comply with XHTML rules.
· All open tags must be terminated by an end tag. Always close tags that have a corresponding closing tag, even those that are usually omitted, such as and <p>.
· Use the <meta> tag. The meta tag helps with searches and document information. The <meta> tag provides a way to store information about the document that is not available elsewhere in the document.
Example:

The <meta> tag can contain catalog, author, or index information that various search engines can use.

<meta name="author" content="Original Author" />
<meta name="created" content="Dec. 22, 1999" />
<meta name="keywords" content="HTML documentation standards" />
2.2. HTML Tag Parameters

All tags should have quoted values – It is required to comply with XHTML and with HTML 4.0.
Example:
“<hr height="5" />”, not “<hr height=5 />”

Include height, width, border and alt attributes in all img tags – Sizing tags helps the browser display the page faster.
Example:

Not all Web browsers are “frame-capable”. Those “frame-capable” browsers will see the frames layout and others will view an alternate or a normal page without frames. The code for the page without frames is bounded by the open and closed <noframes> tag set and includes the open and closed <body> tags and all code therein.

Example:

<frameset cols="80%,20%">

<frame name="column1" scrolling="no" src="col1.html" />

<frame name="column2" scrolling="yes" src="col2.html" />

<noframes>

<body>

sorry, this page requires a frame-enabled

browser.

</body>

</noframes>
</frameset>

2.3. Path Names

Use relative path names when possible. It is more efficient to connect to the server.
Example:

“dallas.html” located in the subdirectory “usa” would be: “Dallas”
Put trailing slash on the URL when making references to directory.
Example:

“AC News” is correct, while “AC News” is not.

3. Formatting

Consistency in formatting of HTML codes allows HTML documents to be much easier to read, comprehend and maintain.
3.1. Indentation

Code should be indented, so that all the statements in the same logical level are in the same indentation. Main reason for indentation is readability and maintainability.
Example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/strict.dtd">
<html xmlns="http://www.w3.org/TR/xhtml1">
 <head>
 <!---
 WebCam.html
 ===========
 Shows a web camera picture
 @$Author: $
 @$Revision: $
 @$Date: $
 --->

 <title>
 Web Cam Page
 </title>
 </head>
 <body bgcolor="royalblue">
 <table bgcolor="navy" width="100%">
 <tr>
 <td>

 </td>
 <td>
 <p align="center">

 This is USDA!

 </p>
 </td>
 </tr>
 </table>
 </br>
 <table bgcolor="navy" width="100%">
 <tr>
 <td>
 <p align="center">

 a USDA Prototype!

 </p>
 </td>
 </tr>
 </table>
 </br>
 </body>
</html>

3.2. Heading Tags
Headings should be not more than one level below the preceding heading level.

Example:

<h3> should not follow <h1>.

3.3. Underline Tags
Use underlines for hypertext links only to eliminate any confusion between a hypertext link and a text underlined for emphasis.

Example:

· for emphasis in italics

· for text emphasis

· for bold

· <i> for italics
3.4. List Tags
List opening and closing tags such as and should take whole line. The entire text inside list section is indented. Place the element tags - with the text of the list.

Example:

First list item

Second list item

Third list item

3.5. Table Tags
Both of the opening and closing table tags should be placed on one line. The contents of the <table> tag are indented. Contents of the <tr> and <td> tags is indented (every subtag is indented again). The opening and closing tags take should be on one line and in the same text column. Also, include cellpadding, cellspacing, width and height within the table tag.
Example:

<table width="800" cellspacing="0" cellpadding="0" border="0" height="0">

<tr>

<td>Data cell 1

</td>

<td>This cell spans 2 columns

</td>

</tr>

<tr>

<td>Data cell 2

</td>

<td>Data cell 3

</td>

</tr>

</table>

Example:

Note: If the rows have more than one sentence, the text should be under the "td" tag and indented. Otherwise, the open and close "td" tags can be on the same line. Be sure to include cellpadding, cellspacing, width and height within the table tag.

<tr>

<td>

 Data cell 1Data cell 1Data cell 1Data cell 1Data cell 1

 Data cell 1Data cell 1Data cell 1Data cell 1Data cell 1

 </td>

<td>

 This cell spans 2 columnsThis cell spans 2 columnsThis cell spans 2

 This cell spans 2 columnsThis cell spans 2 columnsThis cell spans 2

 </td>

</tr>

<tr>

<td>Data cell 2</td>
<td>Data cell 3</td>
</tr>
3.6. Frame Tags
All frame tags should be placed on a line by themselves. The text between every opening and closing tag is indented. Opening and closing tags should be placed on the same level (in the same text column).

Example:

<frameset cols="80%,20%">

<frame name="column1" scrolling="no" src="col1.html" />

<frame name="column2" scrolling="yes" src="col2.html" />

<noframes>

<body>

sorry, this page requires a frame-enabled

browser.

</body>

</noframes>
</frameset>

3.7. Form Tags
Both opening and closing tags should be placed on a line by themselves. The text inside the form is indented. Input tags are placed on one line. The opening and closing tags are placed on lines by themselves. The text inside select is indented. The option tag is placed on one line if possible. Both opening and closing textarea tags are placed on a line by themselves.
Example:

<form method="POST" action="http://www.htmlib.com/formscript.cgi">

Your name:

<input name="name" size="20">

Your e-mail address:

<input name="email" size="20">

I think the HTML Reference is:

<select name="Choice">

<option>Outstanding

<option>Very good

<option>Good

<option>Average

<option>Below Average

<option>Awful

<option selected>

My response would be "indecent" under the CDA Act.

</select>

If you have any further comments, please enter them here:</br>

<textarea name="Comments" rows="10" cols="40">

</textarea>

<input type="SUBMIT">

<input type="RESET">
</form>

4. Comments

Include comments in the code as it is being written and update them accordingly. Also, comments are also convenient for commenting out several adjacent lines of code for debugging purposes.

4.1. Code Commenting Conventions

All procedures should begin with a brief comment describing functionality. This description should not describe the implementation details because these often change over time, resulting in unnecessary comment maintenance work, or worse yet, erroneous comments. The code itself and any necessary inline comments describe the implementation.

Arguments passed to a procedure should be described when their purpose is not obvious and when the procedure expects the arguments to be in a specific range. Function return values and other variables that are changed by the procedure, especially through reference arguments, should also be described at the beginning of each procedure.

4.2. Section Heading Comment Contents
The following guidelines on secion heading comments should be followed.

· Fuctionality of the procedure.

· Assumptions List of any external variable, control, or other element whose state affects this procedure.

· Effects List of the procedure's effect on each external variable, control, or other element.

· Inputs Explanation of each argument that isn't obvious. Each argument should be on a separate line with inline comments.

· Return Values Explanation of the value returned.

Remember the following points:

· Every important variable declaration should include an inline comment describing the use of the variable being declared.

· Variables, controls, and procedures should be named clearly enough that inline comments are only needed for complex implementation details.

· At the beginning of your script, there should be an overview that describes the script, enumerating objects, procedures, algorithms, dialog boxes, and other system dependencies. Sometimes a piece of pseudocode describing the algorithm can be helpful.

4.3. Inline Comments

Inline comments are comments placed in the lines of the code. Use inline comments as follows:

· Include comments in places where the code is unclear and/or nonportable.

· Place comments above the appropriate tag/link.

· Indent inline block comments to the same level as the code they describe.

· Do not include comments for actions that can be stated in the language itself.

· Good inline comments are brief and to the point; the author should assume that the reader is reasonably competent.

· Date Created and Date Modifications should be in the format of “Jan. 10, 1999”, not “01/10/99”, “10/01/99” or “10/01/1999”. This ensures that dates will be understood by all audiences.

· Document modifications in comment tags.

· Initialise and date the beginning and ending of modification if multiple lines.
Example:

<!-- EA Dec. 10, 2000: BEGIN modified table entries -->

table...
<!-- EA Dec. 10, 2000: END -->

· If single line modification, only mark line above.

5. Section 508

The following information is intended to be a guideline for accessible design and development of web pages according to Section 508 Guideline. For the latest information regarding 508 Compliance, please check http://www.section508.gov/.
5.1. Rehabilitation Act
In 1998, Congress amended the Rehabilitation Act to require Federal agencies to make their electronic and information technology accessible to people with disabilities. Inaccessible technology interferes with an individual's ability to obtain and use information quickly and easily. Section 508 was enacted to eliminate barriers in information technology, to make available new opportunities for people with disabilities, and to encourage development of technologies that will help achieve these goals. The law applies to all Federal agencies when they develop, procure, maintain, or use electronic and information technology. Under Section 508 (29 U.S.C. ‘ 794d), agencies must give disabled employees and members of the public access to information that is comparable to the access available to others.

5.2. Use text equivalents for non text elements

Assistive technologies such as screen readers, non-graphical browsers, or Braille readers, cannot interpret images or complex graphs and charts, however, they can convey text associated with those images. Text descriptions must accompany non-text elements so that users with disabilities can distinguish important content from decorative images. Therefore, it is essential to provide meaningful text alternatives to those users so they receive the same information as those without assistive technology.

Images

Use the alt attribute to provide a descriptive text equivalent that summarizes the content of each non-text element.
Example:

Use an empty alt attribute for images that do not convey important information or are transparent and used for formatting graphics, such as a spacer image. Ensure there are one or more spaces inside the quotes.
Example:

When images are used as action buttons on forms such as submit, continue, etc. equivalent alternative text must be assigned.
Example:

<input type="image" name="Submit" src="submit.gif" alt="Submit">

Applets

Since most non-graphical browsers do not support applets, it is important to inform the existence of the applet to the user and provide an alternative means to convey its meaning. Applets should either contain an “alt” attribute.
Example:

<APPLET code="CalculatorApplet.class" width="100" height="100" alt=”Calculator Applet">...</applet>

Another alternative is to include equivalent text in the content of OBJECT elements. When the applet is not supported by the browser or by the assistive technology being used, the text content within the OBJECT element is accessible.
Example:

<OBJECT classid="java:caculator:class" width="100" height="100"> Calculate your Taxes with this Applet</OBJECT>

Charts & Graphs

All graphs and charts should have the alternate text using the alt attribute. In addition, graphs should also provide an additional description using, for example, "longdesc" and a description link. This technique is used to include all the detail about data from the graph. However, until most browsers support the long description attribute, it is necessary to use a description link with the “longdesc” attribute.

The “longdesc” attribute may be used with IMG or FORM tags to point to a HTML file that contains a detailed description and data.
Example:

The description link also points to an HTML file containing the detailed description of the graph or chart. It is commonly referred to as a “D” link since the convention is to use the letter D as the link text.
Example:

D
5.3. Provide alternatives to information conveyed by color

Web pages that convey information through the use of color prevent users who are unable to identify or distinguish colors from interpreting that information. The web page needs to provide another means of making the information available.

Foreground and background colors that are too similar in hue may not provide sufficient contrast for users with a monochrome display or for people with different types of color deficits.

To prevent this when creating HTML web pages, use either light text on a dark background or dark text on a light background to provide good contrast.

5.4. Row and column headers shall be identified for data tables.

Screen readers are unable to accurately interpret data if a table is not designed properly. For those with impaired vision, listening to a speech synthesizer describe a table can be quite a cumbersome process. Unless tables are marked-up properly, they will not provide the appropriate information to support navigation.

The following will help to make tables more readable:
· Use the <TH> element to define heading cells,
· Use the <TD> element to define data cells,
· Use the “headers” attribute for complex tables, and
· Use the <CAPTION> element and/or “summary” attribute.

6. ASP Best Practices
The following recommendations presented will enable developers to develop Active Server Pages (ASP) applications in a well-organized manner. The following guidelines will help create ASP pages that are styled for consistency, readability, and ease of maintenance.
6.1. Constant Naming Conventions

Constant names should be uppercase with underscores (_) between words.
Example:

USER_LIST_MAX

NEW_LINE

6.2. Variable Naming Conventions

For purposes of readability and consistency, use the prefixes listed in the following table, along with descriptive names for variables in your VBScript code.

	Subtype
	Prefix
	Example

	Boolean
	Bln
	blnFound

	Byte
	Byt
	bytRasterData

	Date (Time)
	Dtm
	dtmStart

	Double
	Dbl
	dblTolerance

	Error
	Err
	errOrderNum

	Integer
	Int
	intQuantity

	Long
	Lng
	lngDistance

	Object
	Obj
	objCurrent

	Single
	Sng
	sngAverage

	String
	str
	strFirstName

6.3. Variable Scope

Variables should always be defined with the smallest scope possible. VBScript variables can have the following scope:
· Scope Where Variable Is Declared Visibility

· Procedure-level Event, Function, or Sub procedure Visible in the procedure in which it is declared.

· Script-level HEAD section of an HTML page, outside any procedure Visible in every procedure in the script.

6.4. Variable Scope Prefixes

As script size grows, so does the value of being able to quickly differentiate the scope of variables. A one-letter scope prefix preceding the type prefix provides this, without unduly increasing the size of variable names.

Example:
Procedure-level None dblVelocity

Script-level s sblnCalcInProgress

6.5. Descriptive Variable and Procedure Names

The body of a variable or procedure name should use mixed case and should be as complete as necessary to describe its purpose. In addition, procedure names should begin with a verb, such as InitNameArray or CloseDialog.

For frequently used or long terms, standard abbreviations are recommended to help keep name length reasonable. In general, variable names greater than 32 characters can be difficult to read.

When using abbreviations, make sure the abbreviations used are consistent throughout the entire script. For example, randomly switching between Cnt and Count within a script or set of scripts may lead to confusion.

6.6. Object Naming Conventions

The following table lists recommended conventions for the various objects that might be seen in programming VBScript.

	Object
	type
	Prefix Example

	3D Panel
	pnl
	pnlGroup

	Animated button
	ani
	aniMailBox

	Check box
	chk
	chkReadOnly

	Combo box,drop-down
	cbo
	cboEnglish

	Command button
	cmd
	cmdExit

	Common dialog
	dlg
	dlgFileOpen

	Frame
	fra
	fraLanguage

	Horizontal scroll bar
	hsb
	hsbVolume

	Image
	img
	imgIcon

	Label
	lbl
	lblHelpMessage

	Line
	lin
	linVertical

	List Box
	lst
	lstPolicyCodes

	Spin
	spn
	spnPages

	Text box
	txt
	txtLastName

	Vertical scroll bar
	vsb
	vsbRate

	Slider
	sld
	sldScale

� (� HYPERLINK "http://www.section508.gov/index.cfm?FuseAction=Content&ID=3" ��http://www.section508.gov/index.cfm?FuseAction=Content&ID=3�, accessed Apr 18, 03)

HTML Standards, page 8

