
United States Department of Agriculture (USDA) eGovernment Program
USDA Proof of Concept Prototype

Test Approach
Version 1.0

June 3, 2003

[image: image1.jpg]USDA
SO

Table of Contents

3Introduction

3Test Objectives

3Test Model and Execution Overview

3Testing Methodology

4Execution Schedule

4Execution Approach

5Create System Change Requests (SCRs)

6Test Environment

6Browser Side Configuration

6Entry and Exit Criteria

 Introduction

This document outlines the approach to be used for USDA Prototype testing. Test objectives, test model organization, methodology, test environment topology, entry criteria and exit criteria are defined in this approach document.

The Prototype testing includes test scenarios that validate the overall look and feel and functionality scoped out in the design phase. Testing will be executed in the production environment after the code is migrated from the development environment. Pages will be delivered in six small migrations throughout the two-week testing phase. Issues found during testing will be logged in an issues tracking tool and re-checked during subsequent passes of testing.

Test Objectives

The test objectives are:
· Validate that the creative design, content, and information architecture for the pages defined as in-scope have been implemented correctly for the Prototype; and
· Validate that links to pages provided by external scenarios are working and link to the correct page(s).
Test Model and Execution Overview

Testing Methodology

Testing verifies that the creative design, content, and information architecture are properly implemented on the site. Test scenarios include validating correct images, content, links, functionality, passed values, and javascript error checking on forms.

The Prototype test model is comprised of six cycles based on the migrations provided by the development team. The migrations are described in more detail in the Execution Schedule section of this document. The test cycles are listed below.

	Cycle No.
	Script

	1. Migration 1
	· Home Page and Portals

· Customize Pages

· Prototype Bottom Frame Links

	2. Migration 2

	· Registration Pages

· Online Trade Assistance

	3. Migration 3

	· eLearning

· Food Safety Alerts

	4. Migration 4
	· EIS

	5. Migration 5
	· eGrants

	6. Migration 6
	· eExtension

Test cycles are defined to match the order of items delivered to the production environment. Cycles provide a mechanism to structure the order of testing, to segment the execution of the test, and to facilitate management and status reporting.

Execution Schedule

All the test scenarios in the test model are run in their entirety several times. Each of these iterations is considered a pass. The first full pass identifies all errors. After the pass is completed, the development team corrects any issues that were found. These corrected issues are re-checked during the next pass. If a significant number of errors still exist after the second full pass, these issues are corrected and a third full pass is executed. The use of passes reduces the number of issues found in the system during each pass and helps eliminate their re-introduction into new releases of code.

Prior to each pass, code is migrated to the production environment. This approach provides a mechanism for precisely controlling and containing code changes in the test environment. The production environment will receive six migrations of code from the development team. The migration schedule and the items included in each migration are outlined below:

	Migration
	Date
	Items Included

	Migration 1
	6/11/03
	Home Page, My USDA Pages, Customize Pages

	Migration 2
	6/12/03
	Registration Pages, Online Trade Assistance

	Migration 3
	6/13/03
	eLearning, Food Safety Alerts

	Migration 4
	6/18/03
	EIS

	Migration 5
	6/19/03
	eGrants

	Migration 6
	6/20/03
	eExtension, External Scenario Links

Execution Approach

During the Execution Phase, the functional team will use test scripts to test the prototype site. The prototype test scripts will include expected results that will be compared to actual results. The execution process involves the following:

	#
	Activity
	Task

	
	Establish Production Environment

	1
	Set-Up equipment
	· Install browsers

	
	Execute Test Pass

	2
	Migrate Code
	· A detailed migration log, which includes all changes migrated into the test environment.

	3
	Execute a step from the test script
	· Perform each step in the script exactly as stated.

	4
	Compare the actual results to the expected results
	· Analyze the output

· Ensure that the output matches the expected result document listed under the “Expected Result Reference”

	5
	Document results
	· If the actual result matches the expected result, then initial the “Actual Result” column

· If the actual result does not match the expected result, document the actual result in write the system change request (SCR) number in the “SCR” column.

	6
	Close any prior SCRs logged for that step
	· For the previous pass (i.e. for the 2nd pass if you are working on the 3rd pass), ensure that no SCRs were logged for that step.

· If an SCR was logged for the step on the previous pass and if there is no SCR logged to the step on the current pass, document the change by closing the SCR.

	7
	Emergency Migration
	Emergency migration will only be allowed when show-stopper errors (errors that significantly impact the functionality of the site) exists

	8
	Repeat steps 3 – 6 for each step in the scenario script and for each cycle in the pass
	

	
	Correct Errors Causing Discrepancies

	10
	Review SCRs – approve, reject or defer and set priority
	Test Team Lead task

	11
	Assign SCRs to programmers based on priority
	Lead Developer task

	12
	Fix SCR
	Programmer task

· Make program modification

· Set status of SCR to “Fixed” so that it can be re-tested and closed.

	
	Correct Errors Causing Discrepancies

	13
	When all SCRs are fixed execute the next Regression Test pass (steps 2 – 8)
	

Create System Change Requests (SCRs)

Each time a discrepancy between the actual results and the expected results is found, a system change request (SCR) will to be created to track the issue. The discrepancy may be, but is not limited to an error, a defect, an environmental problem, a usability enhancement or an incorrect expected result.
Prior to assigning a SCR to the development team, the tester will perform a preliminary investigation of the discrepancy to avoid assigning SCRs that result from inaccurate expected results or other test processing. Each SCR will be prioritized based on the requirements of the test schedule. Fixing the discrepancy may involve program changes and/or modifications to the test model. If a program change is required, the code will be fixed in the development environment and unit tested. The fix will then be migrated to the test environment to be regression tested there.

Test Environment

Testing of the prototype will be conducted in the production environment. Code and data modifications will not take place in the production environment. All discrepancies encountered during testing will be recreated and fixed in the development environment and then migrated back to the production environment.

Browser Side Configuration

Three browser test PCs will be used during testing. Each PC will have a screen resolution of 800x600.

The following table defines which browsers and OS combinations will be tested:

	Machine Configuration
	Netscape
	Internet Explorer

	Windows 2000
	6.x
	5.5

	Windows 2000
	6.x
	5.5

	Windows 2000
	7.x
	6.0

Entry and Exit Criteria

Entry and exit criteria act as checkpoints to be evaluated prior to entering or exiting the test phase. Tests begin once entry criteria are met. The test phase is exited once the exit criteria are met.

The following criteria must be met before functional testing can begin

· The production environment is set up and configured;
· Test PC’s are properly configured;
· Code is migrated into the production environment; and
· Test scripts and expected results are documented.
The following criteria must be met before functional testing is complete:

· Test scripts are executed;
· Discrepancies, issues, and defects are fully documented as SCRs; and
· SCRs are resolved and have been re-tested.

