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Executive Summary  
 
The study is the first to examine the role of State-level policies such as net metering and 
Renewable Portfolio Standards (RPS), as well as the role of electric cooperatives, on 
States’ adoption rates of solar and wind systems on U.S. farms.  The study found that 
States with higher energy prices, more organic acres per farm, and more Internet 
connectivity adopt renewable electricity at higher rates. For solar systems, full farm 
ownership and solar resources also have a significant and positive relationship with 
adoption rates.  
 
RPS targets are found to increase renewable electricity adoption at the State level. Our 
result accords with the literature; however, this is the first study to show an impact at the 
distributed-generation scale. Our study does not find a systematic relationship for State 
financial instruments, such as rebates, grants, investment tax credits, and production 
incentives, at least in the form captured by our policy variables.  Similarly, net metering 
and interconnection policies do not seem to influence renewable electricity adoption at 
the State level. Conversely, electric cooperative prevalence in the State is found to have a 
negative relationship to renewable electricity adoption share.  The interaction of those 
factors highlights the importance of coordinating approaches in policy formulation to 
meet Federal and State objectives of increasing renewable energy adoption. 
 
The results of this study can assist States as they further refine and focus their policies to 
promote renewable electricity, particularly during an era of declining government 
budgets. A more detailed examination of farm-level data from the On-Farm Renewable 
Energy Production Survey in combination with policy, institutional, and economic 
variables at the State level can provide a fuller and more realistic interpretation of the 
State-level determinants of adoption of wind- and solar-energy technologies.			
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Introduction 
 
Security, environmental, and economic concerns underlie recent investments in renewable energy 
technologies and implementation of policies to support renewable energy adoption.  Expanded 
production of renewable electricity can help meet a number of objectives, including increased 
energy security, reduced risk from rising and volatile energy costs, as well as decreased carbon 
emissions and other pollutants.1 Newer renewable electricity sources, however, such as wind, 
solar, geothermal, and small hydro, count for less than 3 percent of electricity generation, and 
more conventional renewable sources such as large hydropower and traditional biomass reached 
just below 8 percent of electricity generation in 2010 (U.S. Energy Information Administration 
(EIA ) 2012).2 The cost of adopting renewable electricity systems remains high and is still 
dependent on Federal and State policies. Despite those obstacles, policy support and 
technological advances have led to a tremendous increase in new renewable capacity in the past 
decade, primarily in wind energy (Figure 1, U.S. Energy Information Administration 2012).  EIA 
projects further increases by 77 percent from 10 percent in 2010 to 15 percent in 2035. 
 
Figure 1. Renewable Share of Net Electricity Generation by State (excludes Hydroelectric). 
 

 

Source: U.S. Energy Information Administration (EIA) 
 
 
Wind and solar installations are often located on or close to agricultural land.  For that reason, and 
because 40 percent of the total U.S. land area is in agriculture, many leading States in renewable 
electricity installations are States with large agricultural sectors (National Agricultural Statistics 

                                                 
1 Although this report focuses on solar and wind electricity on U.S. farms, the largest contribution of U.S. 
agriculture to renewable energy continues to be biomass, which, in addition to electricity, is used also for 
heating/cooling, and transportation.  Altogether, biomass accounts for almost 50 percent of renewable 
energy consumption (U.S. Energy Information Administration 2012). By comparison, hydroelectric is 
around 30 percent, while wind and solar are less that 18 percent of renewable energy consumption (U.S. 
Energy Information Administration 2012). 
2 Large hydropower and traditional biomass are considered established sources of renewable electricity and 
count for almost 9 percent of electricity generation (U.S. Energy Information Administration 2012). 
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Service, 2009a).1 Farming operations are also a natural fit for smaller scale renewable electricity 
applications. Agricultural producers are actually early adopters of renewable powered technology due 
to its convenience for small and remote power needs. Wind turbines, for example, were used to pump 
water and for remote electricity generation since the early 1900s and, in the absence of rural 
electrification, were widely incorporated in agriculture operations by 1930.   

 
At the time, agriculture represented the main market for wind energy systems and continues to 
present a large market opportunity for sales of small wind systems (less than 100 kilowatts) today 
(American Wind Energy Association 2011).  Stand-alone solar photo-voltaic (PV) systems were 
introduced in the 1980s and have become the most common form of on-farm electricity 
generation (National Agricultural Statistics Service 2011). Though those off-grid applications 
represented the majority of renewable energy use throughout the 1990s, grid-connected systems 
are now leading the growth in on-farm systems (Xiarchos and Vick 2011). 
 
The 2009 On-Farm Renewable Energy Production Survey (OFREPS) was the first national 
survey of on-farm renewable energy generation.  It addressed only distributed generation of on-
farm renewable energy applications owned and operated as part of individual farm operations.3 It 
excluded “large wind” systems of 100 kilowatts or more, which are generally commercial 
applications often located on farms but operated by other business entities under wind rights lease 
agreements with the farm (National Agricultural Statistics Service 2011).4 The number of small 
wind systems has almost doubled since 2001 (American Wind Energy Association 2011), while 
solar power has increased by 146 percent since 2000 (Sherwood 2010).5 The OFREPS survey 
provides insights about renewable electricity in agriculture and factors that influence distributed 
generation.  
 
Following the examples of Menz and Vachon (2006), Adelaja and Hailu (2008), and Sawyer, et 
al. (1984), our examination applies specifically to State-level adoption rates of wind and solar 
systems for  farms and evaluates the State factors that might explain the States’ varying adoption 
rates.6 Our main interest lies in identifying policy and institutional influences on State-level 
adoption differences while controlling for State differences in economics and structural factors in 
agriculture.  The interest on policy variables is nested in the perceived importance of policy in 
promoting renewable electricity technologies until volume-related costs reach parity with fossil-
based technologies. That study is unique in that it focuses on distributed generation on farms, 
whereas previous State-level work focused primarily on utility-scale installations (Menz and 
Vachon 2006, Adelaja and Hailu 2008, Yin and Powers, 2010, Shrimali and Kniefel 2011). 

                                                 
3 Distributed generation (DG) is an approach that employs small-scale technologies to produce electricity 
close to the end users of power. DG technologies often consist of modular (and sometimes renewable-
energy) generators and provide power onsite with little reliance on the distribution and transmission grid. 
DG can often provide lower-cost electricity and higher power reliability and security with fewer 
environmental consequences than can traditional power generators.  
4 This report focuses on wind and solar installations captured in the OFREPS (available at 
http://www.agcensus.usda.gov/Publications/Energy_Production_Survey/). It excludes anaerobic digesters 
(also included in the OFREPS), as well as small hydro, and geothermal systems (not examined in the 
OFREPS).  
5 Until 2009, which frames the study period of the paper, most of the PV installations had been customer 
sited. 2010 marks the emergence of the utility sector in PV. The share of utility sector installations rose 
from virtually none in 2006 to 15 percent of all installations in 2009 and 32 percent in 2010 (Sherwood 
2010). 
6 The term adoption rate herein refers to the proportion of farms in each State that installed renewable 
electricity systems on their operation until 2009, based on the OFREPS survey. 
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Small-scale renewables have, up to now, mostly been examined at the household level (Mills and 
Schleich 2009, Durham et al. 1988, Labay and Kinnear 1981, Willis et al. 2011). 
  
To  identify a range of potential factors that might systematically account for State variations, 
bivariate statistical correlation tests are performed in accordance to Sawyer et al. (1984).  
Variables that show a significant relationship are used to construct a parsimonious multivariate 
representation of those relationships in the absence of multi-period observations following Menz 
and Vachon (2006) and Adelaja and Hailu (2008). Although technology adoption is ultimately an 
individual farm-level choice, analyzing State-level variables can help explain underlying State 
variation and evaluate policy effectiveness.  
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Literature Review 
 
The literature on for renewable electricity varies in at least four ways:  
 

1. Technologies analyzed. 
2. Level of aggregation (individual decisionmaker or State-level totals) 
      examined.   
3. Sector (utilities, residential users, or farm operators) evaluated. 
4. Analytical methods used to evaluate adoption (ordinary least squares  
      regression, limited dependent variable regression, other statistical  
      technique, or simulation). 

Analytical methods used in renewable energy adoption research can be characterized as 
statistical and non-statistical.  Most recent statistical technology adoption research has 
focused on total renewable electricity capacity or generation in the State. At aggregate 
levels, utility-scale capacity overshadows distributed generation by end-users such as 
farmers, and consequently, total renewable electricity capacity represents utility-scale 
capacity in those studies.  State-level studies face the disadvantage of relying on 
secondary data, while studies of individual decisionmakers use data from surveys 
designed specifically for that purpose.  Also, State-level studies generally involve fewer 
degrees of freedom and narrower ranges of values for the variables, so that consequently 
they are less likely to find statistically significant results. 
 
Menz and Vachon (2006) was the first State-level evaluation of how utility-scale 
renewable electricity capacity relates to State policies. They examined the impact of an 
array of government policies in 39 States on wind energy capacity and its growth from 
1998-2003 through hierarchical linear regression analysis.  They considered renewable 
portfolio standards (RPS), generation disclosure, a mandatory green power option, public 
benefit funds, and choice of electricity source.  Their study was conducted in two parts. 
The first part used bivariate variables for the above policies in existence prior to 2003. 
The second part used the experience related to each policy expressed as the time since 
each policy enactment. They found that both renewable portfolio standards (RPS) and 
green power options were positively related to wind power development. Adelaja and 
Hailu (2008) furthered the analysis by adding State socioeconomic and political 
characteristics in addition to renewable energy policies in the examination of State 
differentials in wind industry development. That study found that RPS has a significant 
effect on wind development as do the State’s wind potential, economic conditions, and 
political structure.  
 
Yin and Powers (2010) evaluated by means of a fixed effects panel model the presence of 
an RPS and its stringency (as measured by whether some utilities in the State are exempt 
from the RPS, whether existing generation when the RPS is implemented is allowed to 
“count” against the RPS, whether utilities can purchase renewable electricity credits from 
outside the State to meet part of the RPS, and penalties imposed on non-compliant energy 
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producers). They found that an RPS that requires additional renewable generation above 
that existing at implementation has a positive impact where the mere presence of a 
weaker RPS does not.  Net metering and interconnection were not found to be effective in 
increasing renewable generation, while mandatory green power offerings and greater 
imported power had positive and significant impacts. 
 
Shrimali and Kniefel (2011) consider the impact of RPS, government green power 
purchasing, and financial incentives along with resource, economic, and political 
measures on wind, biomass, geothermal, and solar generation capacity. They used a 
fixed-effects model with State-specific time-trends for State-level data from 1991-2007 
and found that RPS impact varied by type of renewable and was negative for combined 
renewables.  It was positive for solar and geothermal and negative for wind and biomass.  
They also found that clean energy funds have a significant impact on the share of 
renewable energy, while previous literature showed that a related policy, public benefit 
funds, was not significant.  
 
Delmas and Montes-Sancho (2011) focused on determinants at the utility rather than the 
State level.  They found that the RPS has a negative influence on utilities’ decision to 
invest in renewable capacity and that investor-owned utilities respond more positively to 
RPS mandates than publicly owned utilities.  They consider the possibility that renewable 
capacity expansion may be due to the natural, social, and policy context in the State 
rather than due to the RPS, resulting in “sample selection” bias.  They employ a two-
stage Heckman approach with a logit model predicting RPS adoption and then use the 
predicted RPS in a Tobit model of capacity.   
 
Adoption of distributed generation for residential and small commercial entities is likely 
to differ from utility-scale generation.  For example, renewable energy technologies 
adopted by farmers usually represent only a small part of the farm business and produce 
electricity mainly for consumption on the farm, in contrast to renewable energy 
technologies adopted by utilities whose main product is electricity for sale to the public in 
the marketplace.   
 
Sawyer et al. (1984) performed a State-level analysis for distributed generation; 
specifically, they used a statistical approach to examining how adoption rates for 
residential solar installations have varied across States.  They conducted bivariate 
statistical correlation tests of 11 independent variables with solar adoption rates. They 
also found that actual adoption was low even where it was expected to be economically 
feasible.  They attributed the low adoption rates to consumers being more concerned with 
time to pay back the investment rather than the overall life-cycle cost criterion that had 
been used in the projections.  Anticipating Delmas and Montes-Sancho’s concern about 
causation and sample selection bias, Sawyer et al. included an index of regional 
differences in cultural attitudes toward adoption of policy innovations and alteration of 
established patterns. 
 
At the household level in the residential sector, economic variables shown to impact solar 
hot water adoption choices have included solar radiation availability (Mills and Schleich 
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2009), electricity rates (Fujii and Mak, 1984; Durham et al., 1988), and State tax credits 
(Durham et al. 1988). Demographic variables that positively related to energy-conserving 
investments are income, education, age, and household size (Labay and Kinnear 1981, 
Fujii and Mak 1984, Dillman et al. 1984, Durham et al. 1988, Long 1993; Walsh 1989, 
Sardianou 2007, O’Doherty et al. 2008, Mills and Schleich 2009, Willis et al. 2011). 
However results are not homogeneous. For example, Durham et al. (1988) find no 
significant impact from income and solar radiation availability.  
 
No regression analyses have come to light that look specifically at renewable electricity 
adoption on farms, but two studies have used non-statistical approaches – in particular, 
simulation benefit-cost models have been used to analyze the economic feasibility of 
adopting the technology from the perspective of the individual farm operation.  Solar 
photovoltaic technology has been evaluated for crop irrigation (Katzman and Matlin 
1978) and to run fans and lighting in poultry barns (Bazen and Brown  2009).   
 
Adoption of sustainable agriculture practices at the farm level involving reduced tillage, 
fertilizer, and chemicals has been studied more than adoption of renewable energy 
technologies, and those studies may offer insights about what influences the latter.  
Knowler and Bradshaw (2007) reviewed 55 such studies conducted in the United States 
over 25 years.  They found that education, farm size, additional information, labor 
availability, networking (with agency, business, or other local individuals), and 
willingness to take risks were positively related to adoption.  Age tended to be negatively 
related, but that depended on the type of practice studied.  They found generally a great 
deal of discrepancy in the findings from study to study for the variables evaluated. 
 
In addition to the above regression analyses, crosstabs, multivariate nominal scale 
analysis, and multiple discriminant function analysis have also been used to test various 
hypotheses about consumer decisions to adopt solar energy systems in Maine (Labay and 
Kinnear 1981).  In that approach, perceived attributes of the product are found to explain 
adoption better than commonly used respondent personal characteristics (Ostlund 1974).  
Factor analysis has been used to explain technologies as diverse as hybrid corn, tractors, 
and beta-blockers (Skinner and Staiger, 2007).  The advantage of factor analysis is that a 
large number of factors plausibly associated with technology diffusion are assumed to be 
linear combinations of a few unobserved factors (representing barriers to adoption) that 
are estimated. 
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Solar and Wind Electricity on U.S. Farms 
 
Commercial wind and solar installations are often installed on or close to agricultural 
land, and many States with large agricultural sectors are leaders in renewable energy 
installations. This report focuses specifically on smaller scale distributed generation in 
agriculture. 
 
Wind and solar applications can help farming operations stabilize electricity and energy 
expenditures and decrease carbon emissions. Further, off-grid wind and solar systems can 
provide the producer with an energy source where electricity transmission is difficult or 
impossible. Additionally, it can substitute fuel and gas use for generators on the farm, 
reducing transportation and maintenance costs as well as environmental concerns 
(Xiarchos and Vick 2011). However, renewable energy adoption remains rare on U.S. 
farming operations: the adoption rate is less than 1 percent (National Agricultural 
Statistics Service 2011).  
 
The 2009 On-Farm Renewable Energy Production Survey (OFREPS), conducted as an 
add-on survey for operations who responded that they had produced some form of 
renewable energy on the 2007 Census of Agriculture (National Agricultural Statistics 
Service, 2009a), provides the first national observation on farm renewable energy 
generation (National Agricultural Statistics Service 2011).7 Data portrayed include the 
type, size, cost, incentives, and estimated savings of renewable energy production.  In 
2009, 8,569 farms were reported to produce renewable energy from solar, wind, or 
methane digesters. We focus on renewable electricity from wind and solar. Solar energy 
is the most prevalent, generated on 7,968 of the farms in the survey (93 percent of all 
farms with renewable energy generation). The prominence of solar technology as a 
renewable energy source on farms is not surprising due to its many agricultural 
applications, the most important of which are water pumping for irrigation, electric 
fences, building lighting, and livestock watering, in descending order (Food and 
Agriculture Organization, 2000). The U.S. Department of Agriculture (USDA), National 
Agricultural Statistics Service (NASS) showcases the role of solar energy in irrigation in 
its Farm and Ranch Land Irrigation Survey (National Agricultural Statistics Service 
2004, 2009b). 
 
Solar PV systems are installed in 7,236 farms across the United States and are distributed 
in all the States.  Top States for PV are California, Texas, Colorado, and Oregon. 
California leads the Nation with 25 percent of all farms reporting adoption of a PV 
system, while half of the operations generating on-farm solar PV are concentrated in the 
western parts of the United States. The number of farms using solar energy ranges widely 
from just 4 farms in Delaware to 1,906 operations in California, with an average of 159 
and a median of 86 farms per State. In terms of capacity, the concentration of solar 
energy production is more pronounced. California represents almost 64 percent of PV 

                                                 
7 Since the sample was drawn from the 2007 census questionnaire, farmers who installed renewable energy 
systems for the first time in 2008 and 2009 will not be captured.  
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capacity in agriculture, followed by New Jersey with 6 percent; the Western States hold 
74 percent, and the top 10 States, 83 percent (table 1). Capacity is calculated based on 
State average system capacities. The average system capacity is 4.5 kilowatt (kW) for the 
United States; however the State variation is significant and ranges from 0.4 kW in 
Kansas and 15.5 kW in Delaware. New Jersey and California also have average capacity 
over 10 kW.  The average capacity in the rest of the States ranges from about 0.5 kW to 
4.5 kW, with a median of 1.35 kW.  
 
For the analysis, we focus on farms adopting PV installations normalized by total number 
of farms in each State forming State adoption rates. Adoption rates for solar PV are 
presented in figure 2. 
 
Table 1. Farms With Solar Photovoltaic (PV) by State 

 

FARMS CAPACITY 
State Rank Count Percent State Rank kW Percent kW* Farms 
California 1,825 25 California 20,493 63.7 11.23 1,825 

Texas 541 7 New Jersey 1,943 6.0 14.08 138 
Hawaii 469 6 Oregon 883 2.7 3.00 294 

Colorado 445 6 Hawaii 840 2.6 1.79 469 
Oregon 294 4 Colorado 736 2.3 1.65 445 
Top ten 4,639 64 Top Ten 26,789 83.2 4.08 4,469 
Western 3,739 52 Western 23,757 73.8 2.39 3,739 

U.S. 7,236 100 U.S. 32,193 100.0 4.45 7,236 
Only includes positive reported data and is confined to USDA National Agricultural Statistics Service 
disclosure limitations 
*State average per farm 

 
Small wind is the second most prevalent renewable fuel source; 17 percent of farms 
reporting renewable energy generation have wind-generating capacity (installed in 1,420 
farms across the United States). The States with the largest amount of on-farm wind 
production are California, Texas, Colorado, and Minnesota. California leads the Nation 
with 9.5 percent, and about half of the operations with small wind are concentrated in the 
top 10 States, which show no district geographic pattern. The number of farms using 
small-wind energy ranges from zero farms in Delaware to 134 operations in California, 
with an average of 29 and a median of 21 farms per State. The concentration of small 
wind is more pronounced in terms of capacity. Minnesota represents about 22 percent of 
small-wind capacity in agriculture, followed by Washington with 12 percent. The top 10 
States hold 66 percent (table 2). The average installed generating capacity of small-wind 
turbines is 6 kW, greater than the average solar capacity—4.5 kW per farm. The average 
is 4 and median is 3 kW per farm. 
 
For the analysis, we focus on farms’ small-wind installations normalized by total number 
of farms in each State forming State adoption rates. Adoption rates for small wind are 
presented in figure 2. 
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Table 2. Farms with Small Wind by State 

FARMS CAPACITY 
State Rank Count Percent State Rank kW Percent kW* Turbines Farms 
California 134 9.53 Minnesota 2,880 26.22 20 144 99 

Texas 102 7.25 Washington 1,273 11.59 19 67 50 
Minnesota 99 7.04 Texas 592 5.39 4 148 102 
Colorado 98 6.97 California 480 4.37 3 160 134 
Arizona 63 4.48 Wisconsin 472 4.3 8 59 46 
Montana 63 4.48 Colorado 441 4.01 3 147 98 
Top 10 762 54.2 Top 10 7,291 66.37 8 946 711 

U.S. 1,406 100 U.S. 10,986 100 6 1,831 1,406 
Only includes positive reported data and is confined to USDA National Agricultural Statistics Service 
disclosure limitations 
*State average per turbine 
 

Figure 2. State Adoption Shares for Photovoltaic Solar and Small Wind. 

 

Only includes positive reported data and is confined to USDA National Agricultural Statistics Service 
disclosure limitations. 

The average installation cost per U.S. farm for solar PV was $31,947, corresponding to a 
size of 4.5 kW (7.1 $/W).  The average installation cost per turbine for small wind was 
$12,972, corresponding to 6 kW (2.2 $/W). For solar PV systems smaller than 1kW, the 
cost to farmers averaged $8,000, while it was $18,000 for 1-5kW systems and $98,000 
for 10-16kW systems. For small wind, the cost for turbines averaged $3,000 for systems 
smaller than 1kW, $6,000 for those between 1 and 5kW, and $27,000 for those between 5 
and 20kW. Farmers spend, on average, less than $10,000 for installing solar PV systems 
in 17 States. The average expense was $10,000-$20,000 in 20 States, and $20,000-
$40,000 in 10 States; only in 3 States the average expense for solar energy was higher 
than $40,000. Farmers spend, on average, less than $5,000 per turbine installed in 13 
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States. The average expense was $5,000-10,000 in 10 States, $10,000-$20,000 in 12 
States, and $20,000-$50,000 in 6 States.  
 
Table 3 shows the States with the highest and lowest installation costs, and the 
corresponding average residential electricity prices. There does not seem to be much 
correlation between State-level electricity prices and installation costs for small 
wind(r=0.02); correlation is more substantial in the case of solar PV (r=0.32). State-level 
electricity prices will affect the period of time needed for a farmer to recoup the initial 
investment in the renewable system.  While the average installation costs are higher in 
New Jersey and Delaware relative to Nebraska and Indiana, for example, electricity 
prices are also much higher, indicating that over the life of the system, potential savings 
could be much higher.  The payback period (time to recover initial installation costs) and 
potential lifetime savings are two metrics that a farmer may consider in addition to 
installation costs when deciding to invest in a renewable system.  
 
Farmers that produced renewable energy on-farm reported savings on their utility bills for 
2009 in nearly every State.8 The savings were especially noticeable in New York, with 
annual savings over $5,000; Rhode Island and California with annual savings over $4,000; 
as well as South Carolina, Vermont, New Jersey, and Arizona with annual savings above 
the national average of $2,400. The median utility savings was $1,250; 13 States saved less 
than $1,000 in utility bills, 21 between $1,000-2,000, and 15 over $2,000. 
 
The period of time needed for a farmer to recoup the initial investment in the renewable 
system will also be influenced by the financial support received. Farmers received 
financial support for installing renewable electricity from a number of sources such as 
Federal, State, and local government, as well as utilities. The average financial support 
received for solar PV was 44 percent of the project cost, slightly lower than the support 
for small wind (49 percent). 
 
  

                                                 
8 Includes farmers that reported wind turbines, solar panels, and/or methane digesters. 
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Table 3. Lowest and Highest Average Installation Cost by State 

 

State 
Installation 

Cost($)* kW* 

Electricity 
Price*** 
(c/kWh) State 

Installation 
Cost($)** kW** 

Electricity 
Price*** 
(c/kWh) 

Solar PV Small Wind 
Highest Five States 

New Jersey 112,855 14.08 15.66 New Jersey 47,518 8 15.66 
Delaware 101,250 15.5 13.93 West Virginia 44,400 5 7.06 
California 78,910 11.23 13.81 Massachusetts 43,218 7 17.68 
Illinois 39,018 4.58 11.07 Minnesota 37,647 20 9.74 
Connecticut 29,571 4.17 19.55 Iowa 23,840 8 9.49 

Lowest Five States 
Kansas 4,607 0.41 8.88 Nevada 1,455 1 11.93 
Oklahoma 4,612 0.43 9.09 Nebraska 1,563 1 7.87 
North 
Dakota 5,048 0.43 

7.51 
Hawaii 1,799 1 

32.5 

Indiana 5,262 0.54 8.87 Utah 2,562 1 8.26 
Nebraska 5,632 0.74 7.87 Arizona 2,768 1 10.27 

Only includes positive reported data and is confined to USDA National Agricultural Statistics Service 
disclosure limitations  
*Per farm 
**Per turbine 
*** Average residential electricity price 

 
The OFREPS Survey is not sufficiently detailed to evaluate small-wind and solar-PV 
system return by State in this paper. The length of the payback period for solar PV and 
small wind depends on the panel type or the turbine, the quality of solar or wind resource 
at the installation site, grid-connection, prevailing electricity rates, and available 
financing and incentives. Depending on these and other factors, payback can range 6 to 
30 years9. This paper, however, evaluates the factors that Denholm et al. (2009) and 
Edwards et al. (2004) identify to directly impact the return for solar-PV and small-wind 
installations respectively: energy prices, resource potential, and incentives that directly 
impact the return for renewable energy installations. Denholm et al. (2009) 
characteristically show in figure 3 that residential PV is close to breakeven cost in areas 
where there is a combination of high electricity prices and good solar resources (like 
California) or a combination of high electricity prices and incentives (like New York or 
Massachusetts). Similarly, Edwards et al. (2004) show that the economics of residential 
small-wind systems, as measured by breakeven cost and simple payback, depend on 
wind-resource class, electricity prices, and incentives. 

 
 
 
 
 

                                                 
9 Sources include a. Solarbuzz http://www.solarbuzz.com/going-solar/using/economic-payback, and b. 
AWEA http://www.awea.org/learnabout/publications/upload/Small_Wind_FAQ_Factsheet.pdf.  For 
specific case studies and/or scenarios, payback can be determined through discounted cash flow analysis or 
calculators available on the Web. 
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Figure 3. Increase in Electricity Price Required for Residential PV Breakeven at $8/Watt. 
 

 
Source : Denholm et al., 2009
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Factors Influencing Solar and Wind System Adoption on Farms 

 
A range of potential factors that may account for State variations in renewable electricity 
adoption rates on farms is identified and evaluated.10  Descriptive statistics and 
correlation analysis are presented.11 Bivariate statistical correlation tests are performed, 
and significance is denoted as *** at the 0.01 level, and ** at the 0.05 level and * at the 
0.10 level. A multivariate specification is constructed in the next section, following Menz 
and Vachon (2006) and Adelaja and Hailu (2008), to account for policy and institutional 
influences while controlling for structural and economic factors in the States (Adelaja and 
Hailu 2008, Yin and Powers, 2010, Shrimali and Kniefel 2011).12 Even though the rigor 
of this analysis is restricted because some of the State characteristics do not necessarily 
represent the specific characteristics of the solar adopters, the analysis is pursued in order 
to understand adoption at the aggregate State level and to identify policy choices that can 
have an impact in renewable electricity technology adoption in the agricultural sector 
while accounting for other influences. This paper may also guide further analysis of 
farmer adoption behavior at the microdata level and serve as a background for future 
interpretations.13  
 
Economic Factors 
 
The influence of economic factors on renewable energy adoption has been examined on 
the residential (Mills and Schleich 2009, Fujii and Mak, 1984; Durham et al., 1988) and 
State (Adelaja and Hailu 2008) level. We focus on energy prices and resource potential 
that directly impact the return for renewable energy installations.  
 
The cost of energy can be an important determinant for the diffusion of solar and wind 
energy. The State average electricity and diesel prices (p.electricity and p.diesel) 
approximate avoided energy costs when renewable electricity is produced on-farm. The 
electricity prices represent prices for residential customers in 2008 (U.S. Energy 
Information Administration, 2012a). Diesel prices are computed by subtracting State 
taxes from 2008 average regional on-highway (No2) diesel fuel prices (U.S. Energy 
Information Administration 2012b; U.S. Energy Information Administration 2009b).  
 
The Pearson’s correlation coefficient for the adoption share of PV (PVAS) is 0.48*** 
with diesel prices and 0.35** with electricity prices.14 The Pearson’s correlation for the 
adoption share of wind (SWAS) is 0.45*** with diesel and 0.35** with electricity prices.  

                                                 
10 Variable abbreviations are summarized in table 13 of the appendix. 
11 Descriptive statistics are presented in table 14 of the appendix for select variables. 
12 Preliminary correlation analysis provides the basis for variable selection in the multivariate analysis 
because of limitations imposed by the small number of observations (Evans and Olson, 2003). 
13 Results can guide attention to variables of interest and be compared to future analysis; inferences about 
individual adoption impacts, however, are not recommended because of the potential of ecological 
inference fallacy (Robinson, 1950). 
14 Pearson’s correlation coefficient is a measure of the strength of linear dependence between two variables 
that ranges from +1 to -1. 
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Solar and wind energy can directly replace electricity for on-grid applications and fossil-
based fuels for off-grid applications. Most of the early adoption of PV on farms was for 
off-grid applications like water pumping; however, in the last decade, most PV additions 
have been on-grid.  
 
State average electricity and diesel prices are highly correlated (r = 0.73), and 
consequently, only one is used in the multivariate analysis. Electricity prices 
(p.electricity) vary widely across States, ranging from $6.99/kWh in Idaho and 
$19.55/kWh in Connecticut. There is less variation in diesel prices (p.diesel); the 
coefficient of variation is 2.8 percent for diesel prices compared to 28.7 percent for 
electricity prices.  So, it seems likely that even though electricity prices are less closely 
correlated with adoption than are diesel fuel prices, the wider variation in electricity 
prices makes them a better measure to reflect State-level differences in energy costs.  
 
The economics of a renewable energy installation are also dependent on the resource 
potential available for energy production. The more potential there is for energy 
production, the faster the payback period is for the initial investment in the renewable 
system and the larger potential savings over the life of the system. Therefore, consumers’ 
adoption behavior might likely be influenced by how “sunny” or “windy” their State is.  
We calculate the State resource potential for both wind and solar. The State annual 
average for daily solar resource denoted as PV resource was calculated in ArcGIS from 
low resolution data (surface cells of approximately 40 km by 40 km in size) developed by 
the National Renewable Energy Laboratory’s (NREL’s) Climatological Solar Radiation 
Model (National Renewable Energy Laboratory 2009). Arizona has the highest average 
State annual solar resource potential at 6.2 kWh/m2/day, and Michigan the lowest at 4.2 
kWh/m2/day. The wind resource potential was calculated as an integer from one through 
five designating the average State wind classification based on wind-power density at 50 
meters.  The State averages were calculated in ArcGIS based on low-resolution data (25-
kilometer grid cell resolution) from the national wind-resource assessment of the United 
States, first created for the U.S. Department of Energy by the Pacific Northwest 
Laboratory (National Renewable Energy Laboratory 2003). Mississippi, with an average 
classification of one, has the lowest State average, while Maine, North Dakota, and South 
Dakota have the highest, with an average classification of 5. The correlation of the PV-
adoption share is 0.28* with solar resource, while the correlation of the wind-adoption 
share with the wind resource of 0.21 is non-significant. 
 
Institutional Factors 
 
The Rural Electrification Act of 1936 led to the formation of numerous cooperatives 
tending to rural electrification. As a consequence, farms are often served by electric 
cooperatives which are member-owned, private, independent, and non-profit electric 
utilities. The percentage of electric customers served by an electric cooperative (% coop) 
is included as an indicator of the  prevalence of  cooperatives in the electricity generation 
for each State, based on data available from the U.S. Energy Information Administration 
(U.S. Energy Information Administration 2012c). Electric cooperatives have distinct 
characteristics that can impact renewable energy adoption by farms. For example, the 
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high cost of maintaining the infrastructure needed to cover large rural areas can cause 
prices for electric cooperatives to be higher. Indicatively, in Kentucky, electric 
cooperatives serve an average of eight consumers per mile of electric line, while investor-
owned utilities (IOU) and municipal utilities serve 25 and 60 consumers per mile of 
electric line respectively (KAEC). Additionally, electric cooperatives, unlike IOUs, are 
not required by the Public Utility Regulatory Policies Act of 1978 (PURPA) to 
interconnect with and purchase power at avoided cost from customers with excess onsite 
generation.  Similarly, many States with net metering, interconnection, and RPS exclude 
cooperatives from the regulation. Not surprisingly, the adoption share on farms is 
negatively correlated with the share of customers in the State that purchase electricity 
from electric cooperatives (r=-0.35** for PV adoption and r=-0.28* for wind adoption).  
 
Policy Factors 
 
Renewable energy policies have been important to the growth of renewable electricity 
production in the last decade. However, policies promoting renewable electricity 
development vary widely from State to State in formulation and effectiveness.  Menz and 
Vachon (2006), Adelaja and Hailu (2008), Yin and Powers (2010), and Shrimali and 
Kniefel (2011) examined policies expected to impact State-level adoption at the utility-
scale. Our examination is unique as it focuses on policies that can impact State-level 
adoption of distributed generation specifically in agriculture. Table 4 shows Pearson’s 
correlation for the different policy instruments promoting distributed generation with 
solar PV and small-wind adoption rates in agriculture. Table 8 provides a view of the 
geographic distribution of such State policies. 
 
RPS 
Renewable Portfolio Standards (RPS) require a minimum amount of renewable electricity 
sales, or generating capacity, that electricity utilities must achieve according to a 
specified schedule of dates and mandates. By December 2009, 29 States and the District 
of Columbia had established an RPS.15 The specified target amount and date to meet the 
requirements varied by State. Some States also provided specific solar and/or distributed 
generation (DG) “set asides.” A “set-aside,” also called a “carve-out,” is a provision 
within an RPS that requires utilities to use a specific renewable resource to meet a certain 
percentage of their RPS. While RPS policies are designed to encourage utility-scale 
investments, those set-aside provisions provide incentives specifically for DG, such as 
solar and small-wind. Sixteen States and the District of Columbia have such set-asides 
implemented (Database of State Incentives for Renewables & Efficiency, DSIRE).   

The RPS variables presented in the study are based on our analysis of DSIRE's 
Quantitative RPS Data Project (2009) for December 2009. RPS targets represent a 
percentage of retail electricity sales covered by the RPS at the final target date in each 
State. We estimate the RPS target for new renewable generation (nr rps target) by 
excluding traditional sources like biomass and hydro from our interpretation of the RPS 
tiers for each State. Similarly, we identity solar and distributed generation RPS set-aside 

                                                 
15 Two States express their target in terms of installed capacity, while five additional States set a non-
binding renewable energy goal. Those are excluded from the analysis.  
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targets (sdg rps target). We further identify States that exempt cooperatives from the RPS 
(coop exemption) and States that have a separate RPS for cooperatives (coop _ rps) as 
well as the respective targets that the cooperatives face (coop rps target). New renewable 
RPS targets (nr rps target) vary from zero to 33 percent of electricity sales, while 
solar/DG RPS targets (sdg rps target) only reach 5 percent. When a separate target is 
granted to cooperatives, it is much lower. Correlations with the different RPS indices are 
large and significant for solar adoption rates (maximum of 0.54 for coop new RPS 
target); they are much smaller for small-wind adoption rates and only significant for coop 
new RPS target and coop exemption.  As expected, the adoption rates are negatively 
correlated with coop exemptions. We also find that there is a statistically significant 
difference in the mean adoption rate of States with a coop exemption relative to those 
without one (table 5). The overall and cooperative specific targets are highly correlated 
both for new renewables (r=0.79) and solar/DG(r=99), and only one of each is used in the 
analysis.  
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Table 4. Correlation Analysis for Policy Variables With Solar-PV and Small Wind Adoption 
Rates 

Correlation with 
Share PVAS SWAS 

RPS 

NR RPS Target NA 0.47*** 0.23 

Coop Exemption  0.31 -0.39** -0.35* 

Coop NR RPS Target NA 0.54*** 0.32** 

SDG RPS Target NA 0.33** 0.22 

Coop SDG RPS Target NA 0.34** 0.23 
Net Metering 

Net Metering 0.83 0.28* 0.24 

Effective Net Metering 0.54 0.46*** 0.35** 

NM P. Excess Electricity NA 0.27* 0.30** 

Cooperative Net Metering 0.54 0.21 0.25 

Effective Coop Net Metering 0.40*** 0.39** 0.36 
Interconnection 

Interconnection 0.75 0.21 0.17 

Effective Interconnection 0.29 0.47*** 0.37** 

Coop Interconnection 0.4 0.28* 0.28* 

Effective Coop Interconnection 0.17 0.43*** 0.47*** 
Financial Incentives 

Incentive 0.56 0.1 0.09 

ITC  rate, % NA -0.02 0.01 

ITC 0.23 0.03 0.09 

ITC Years NA 0.0008 -0.04 

PI rate, $/kWh NA 0.2 -0.09 

PI 0.17 0.22 -0.07 

PI Years NA 0.08 0.22 

DP 0.4 0.17 0.22 

DP Years NA 0.17 -0.06 

REAP # NA 0.02 0.09 

REAP $ NA 0.07 0.07 
PVAS: Solar-PV adoption share. SWAS: Small-wind adoption share. Independent variable abbreviations 
summarized in Table 13 of the appendix. 
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Table 5. Test of Means of Solar-Photovoltaic (PV) and Small-Wind Adoption Rates for 
renewable Portfolio Standard (RPS) 

	 	
N	 Mean	 SD z	 p

Solar‐PV	Adoption	Share(PVAS)

Co
op
	

Ex
em
pt
io
n	 0	 22	 0.0077	 0.0065	

1.992**	 0.0464	
1	 10	 0.0028	 0.0024	

Small‐Wind	Adoption	Share	(SWAS)

Co
op
	

Ex
em
pt
io
n	 0	 21	 0.0014832	 0.0012	 	

1.775*	

	

0.0759	1	 10	 0.0007	 0.0007	

z and p are based on the Wilcoxon-Mann-Whitney non-parametric mean equality test.  
***, **, * means are statistically different at the p>0.01, p>0.05 and p>0.10 level of confidence. 

	 	
Net metering  

Net-metering policies are aimed at small-scale distributed generation installations. Those 
policies allow utility customers with renewable energy systems to be compensated for 
electricity generated in excess of what they consume. Consequently, net metering can 
have positive financial implications for renewable energy adoption (Xiarchos and Vick 
2011). The specific rules, however, vary significantly in design from State to State: for 
example, in terms of policy coverage, compensation rate per excess kWh generated 
(retail, avoided cost, or other), carryover and rollover timeframe, unidirectional or 
bidirectional meter use, subscriber and power limits (Freeing the Grid, DSIRE). Due to 
that variation, Freeing the Grid grades the effectiveness of net-metering legislation in 
each State (Rose 2008). Of the 41 States and the District of Columbia with net-metering 
policies in 2008, only 26 States were considered by Freeing the Grid to have “effective” 
net-metering policies (that is, received a grade of A, B, or C) based on their scoring 
methodology. Additionally, 14 States excluded electric cooperatives (the electric utilities 
that most often service farmers and ranchers) from net-metering requirements in 2008 
(Xiarchos and Vick 2011).16 The norm in net metering is a single bi-directional meter; 
however, it is possible that the electricity provider requires two meters: one that measures 
the flow of electricity from the grid and the other into the grid. For such a purchase-and-
sale arrangement, the customer is required to receive only the utility’s avoided cost for 
the excess electricity, which is a much lower price than the retail rate.17 In 2008, only 29 

                                                 
16Additionally	Delaware	only	requires	net	metering	from	cooperatives	that	competed	outside	their	
service	territories.	
17PURPA	requires	power	providers	to	purchase	excess	power	from	grid‐connected	small	renewable	
energy	systems	at	a	rate	equal	to	what	it	costs	the	power	provider	to	produce	the	power	itself.	
Alternatively,	the	utility	may	offer	a	premium	price	above	the	utility’s	avoided	cost.	
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States and the District of Columbia offered retail electricity price for the excess 
electricity generated. 

 According to the U.S. Energy Information Administration (2009a, 2010, 2011), the 
number of renewable electricity customers in net-metering programs has been steadily 
increasing: from 4,472 customers in 2002 to 48,886 customers in 2007, up to 96,506 
customers in 2009. The majority of those customers (over 90 percent) are residential.18  
 
Five indicators for net metering are examined: having a net metering regulation, having 
an effective net metering regulation, and having the regulation apply to electric 
cooperatives in the State (coop net metering and coop effective net metering) as well as 
the excess electricity price received in each State based on the net-metering rules (nm p. 
excess electricity). Net-metering indicators have lower correlations than effective net-
metering indicators. Low correlation is also found for the estimate of the price received 
for excess electricity based on the net-metering rules of each State. Correlation is highest 
for effective net metering (r=0.46) and effective coop net metering (r=0.39).  Focusing on 
those net metering indicators, we find that there is a statistically significant difference in 
the mean adoption rate of States with effective net-metering rules relative to those 
without effective net-metering rules for PV adoption (table 6). The statistical significance 
is highest for effective net metering. For effective cooperative net metering, Wilcoxon’s 
rank-sum test of means is statistically significant only at the p>0.10 level of confidence, 
while for small wind, Wilcoxon’s rank-sum test of means for adoption rates is 
statistically significant only for effective net metering at the 10-percent significance level.  
Another observation is that the correlation for cooperative indicators does not differ 
substantially from the respective general State indicators.19  Due to the high correlation of 
the cooperative and the general State effective net-metering indicators (r=0.74), only the 
general State effective net metering is evaluated in the multivariate analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                                                 
18 Some farms are included in the Energy Information Administration (EIA) “residential” category, while 
other farms are classified as commercial customers depending on the utility schedule they qualify for. 
19 Wilcoxon’s rank-sum test of means for States with (effective) interconnection by (effective) coop 
interconnection further supports that the mean adoption rates of States with (effective) net metering does 
not differ significantly for States that exclude electric cooperatives from the regulation (not shown but 
available upon request). 
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Table 6. Test of Means of Solar-Photovoltaic (PV) and Small-Wind Adoption Rates for Net 
Metering 
 

  
N Mean SD z p 

Solar-PV Adoption Share(PVAS) 

E
ffe

ct
iv
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et
 

M
et

er
in
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0 22 0.0024 0.0025  

-2.607*** 

 

0.0091 1 26 0.0077 0.0067 
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g 0 34 0.0035 0.0042  

-1.929* 

 

0.0537 1 14 0.0094 0.0071 

Small-Wind Adoption Share(SWAS) 
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0 21 0.0005806 0.0006  

-1.819* 

 

0.0689 1 25 0.0015 0.0016 

E
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0 28 0.0007 0.0007  

-1.418 

 

0.1562 1 18 0.0016 0.0018 

z and p are based on the Wilcoxon-Mann-Whitney non-parametric mean equality test. 
 ***, **, * means are statistically different at the p>0.01, p>0.05 and p>0.10  level of confidence. 
 
Interconnection 

Interconnection standards stipulate the technical specifications and procedures by which 
the renewable energy systems will connect to the distribution grid. They are essential for 
ensuring the safety and stability of the distribution system, and they reduce transaction 
costs and uncertainties for customers interested in installing distributed generation 
systems and their utility. Rules again vary considerably by State, and according to the 
scoring methodology used in Freeing the Grid, only 14 of the 37 States and the District 
of Columbia that implemented interconnection standards were considered to be 
“effective”—that is, received a grade of A, B, or C—and met the requirements for 
satisfactorily having removed interconnection market barriers for renewable energy 
development (Rose 2008). Additionally, the electric cooperatives that most often service 
farmers were not subject to interconnection standards in 15 States in 2008 (Xiarchos and 
Vick 2011). We examine four indicators: interconnection, effective interconnection, coop 
interconnection, and effective coop interconnection. 

Similarly to net metering, correlation is high only for effective interconnection and 
effective cooperative interconnection. Focusing on the effective interconnection 
indicators, we find that both for solar and small wind there is a statistically significant 
difference in the mean adoption rate of States with effective interconnection rules relative 
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to those without effective interconnection rules (table 7). Additionally, the correlation for 
cooperative indicators does not differ substantially from each respective general State 
indicator.20  Due to the high correlation of the cooperative and the general effective State 
interconnection indicator (r=0.74), only one is examined in the model representation. 

Table 7. Test of Means of Solar-Photovoltaic (PV) and Small-Wind Adoption Rates for 
Interconnection 

  
N Mean SD z p 

Solar-PV Adoption Share (PVAS) 
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1 19 0.0080 0.0070 
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1 8 0.0108 0.0078 
  

Small-Wind Adoption Share (SWAS) 
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0 32 0.0008 0.0009 -2.483** 0.0130 
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0 38 0.0008 0.0009 -2.318** 0.0204 

1 8 0.0024 0.0020 
  

z and p are based on the Wilcoxon-Mann-Whitney non-parametric mean equality test.  
***, **, * means are statistically different at the p>0.01, p>0.05 and p>0.10 level of confidence. 
 
Financial Incentives  

Tax incentives, rebates, and grants are offered by States to encourage the use of 
renewable electricity by making its installation more cost effective.  Rebates and grants 
are direct payments: they offer a payment or discount that reduces the cost of renewable 
electricity installations.  Installation tax credits are corporate and personal (income) tax 
credits expressed in terms of percent of expenses for renewable electricity installations.  
However, tax credits with low limits of payment act more like rebates and are estimated 
in the report as such.21 Lastly, production incentives (or performance-based incentives) 
provide payment per generated kilowatt-hours (kWh).  Payments, like feed in tariffs, are 
one form of production incentive (as in Washington State); renewable energy credits 

                                                 
20 Wilcoxon’s rank-sum test of means for States with (effective) interconnection by (effective) coop 
interconnection also shows that the mean adoption rates of States with (effective) net metering does not 
differ significantly for States  that exclude electric cooperatives from the regulation (not shown but 
available upon request). 
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(RECs) and solar RECs (SRECs) are another (examples include California and 
Pennsylvania). Even a tax credit can be a performance-based incentive, like in Nebraska, 
where the tax credit offered is based on generated kWhs. 

 Twenty-seven States were identified to have some State incentive (incentive) that 
supported small-scale renewable distributed generation in 2008: 11 had tax credits (ITC); 
19 had grant and rebate programs (DP); and 8 had production incentives (PI). Loan 
programs can also provide financing for the purchase of renewable energy equipment, but 
such programs are not identified for our analysis. Database of State Incentives for 
Renewables and Efficiency (DSIRE), individual State programs, and REC markets were 
consulted to extract the financial variables examined. We include policy dummy 
variables and, when quantitatively comparable, we also include the incentive rates as well 
as the years since the policy adoption as measures of policy stringency.  A binary variable 
is included for having some incentive (incentive) and for each policy separately: ITC, PI, 
and DP. For the investment tax credit and the production incentive, we also have each 
State’s rate (ITC rate and PI rate) and the years from adoption (ITC years and PI years). 
For direct payments, incentives are not easily compatible, so we only include the years 
since policy adoption (DP years). We find that correlations with renewable electricity 
adoption rates are small and insignificant, not only for the binary variables but also for 
the incentive rates and years since enactment, which are examined as measures of policy 
stringency. The results are somewhat surprising provided the high upfront capital cost of 
renewable energy installations and the potential for those policies to increase cost 
effectiveness.  

Rural Development’s Renewable Energy Systems and Energy Efficiency Improvement 
Program, renamed Rural Energy for America (REAP) in the 2008 Farm Bill, has also 
provided some financial support to solar and small-wind installations. Most of the 
awards, however, have been for energy efficiency; for example, 74 percent in 2008. From 
2001 to 2009, USDA’s Rural Development funded 550 solar and small-wind projects 
with a total of over $17.5 million in funds. However, through 2009, awards were 
geographically concentrated to only a few States and did not focus on smaller systems 
(Xiarchos and Vick 2011). Consequently, State adoption rates for solar and small-wind 
are not expected to be highly correlated with the number of REAP awards in the State 
(REAP #), or the dollar amount of awards (REAP $). Program changes after 2009 should 
make them a more influential factor (Xiarchos and Vick 2011), provided continuation of 
program funding in the coming years.  

	

	

	

	

                                                                                                                                                 
21 For the purposes of this study, we placed tax credits with a limit of $2,000 or less in the “rebates” 
category.  Tax credits with a limit of more than $2,000 are shown in the “tax credits” category. 



 

24 |       Factors Influencing Solar and Wind System Adoption on Farms     
 

Table 8. Select Policy Variables for the U.S. States.  
	
State	 Net	Metering	 Interconnection Incentive RPS	 S	DG	RPS
Alaska	
Alabama	
Arkansas	 Effective	 Yes
Arizona	 Effective	 Effective ITC,	DP Yes	 Yes	
California	 Effective	 Effective PI Yes	
Colorado	 Effective	 Effective Yes	 Yes	
Connecticut	 Effective	 Yes DP Yes	 Yes	
District	of	Columbia	 Effective	 Effective Yes	 Yes	
Delaware	 Effective	 Yes DP Yes	 Yes	
Florida	 Effective,	Exempt	 Exempt
Georgia	 Yes	 Yes
Hawaii	 Yes	 Yes Yes	
Iowa	 Effective,	Exempt	 Exempt PI Exempt	
Idaho	
Illinois	 Exempt	 Effective,	Exempt DP Exempt	 Yes	
Indiana	 Exempt	 Exempt DP
Kansas	 ITC Exempt	
Kentucky	 Effective	
Louisiana	 Effective	 Yes
Massachusetts	 Effective	 Effective DP Yes	
Maryland	 Effective	 Effective PI,	DP Yes	 Yes	
Maine	 Effective	 Yes	
Michigan	 Yes PI Yes	
Minnesota	 Yes	 Yes Yes	 Yes	
Missouri	 Effective	 Yes Exempt	 Yes	
Mississippi	
Montana	 Effective,	Exempt	 Exempt ITC Exempt	 Yes	
North	Carolina	 Exempt	 Effective,	Exempt ITC Yes	 Yes	
North	Dakota	 Exempt	 ITC Voluntary	
Nebraska	 PI
New	Hampshire	 Effective	 Yes Yes	 Yes	
New	Jersey	 Effective,	Exempt	 Effective,	Exempt PI Yes	 Yes	
New	Mexico	 Effective	 Yes Yes	 Yes	
Nevada	 Effective,	Exempt	 Effective PI,	DP Yes	 Yes	
New	York	 Effective,	Exempt	 Effective,	Exempt ITC,	DP Exempt	 Yes	
Ohio	 Effective	 Exemption DP Exempt	 Yes	
Oklahoma	 Yes	
Oregon	 Effective	 Effective,	Exempt ITC,	DP Yes	
Pennsylvania	 Effective,	Exempt	 Effective,	Exempt PI,	DP Exempt	 Yes	
Rhode	Island	 Exempt	 ITC Yes	
South	Carolina	 Yes	 Exempt ITC
South	Dakota	 Voluntary	
Tennessee	 ITC,	DP
Texas	 Yes	 Exempt Exempt	 Yes	
Utah	 Exempt	 Exempt ITC,	DP Voluntary	
Virginia	 Effective	 Yes Voluntary	
Vermont	 Effective	 Effective DP Voluntary	
Washington	 Yes	 Effective PI,DP Yes	
Wisconsin	 Exempt	 Exempt DP Yes	
West	Virginia	 Yes	 Yes DP
Wyoming	 Effective	 Yes

Exempt: Cooperatives are exempt from the policy 
Source: USDA Office of Energy Policy and New Uses (OEPNU), Database of State Incentives for 
Renewables and Efficiency (DSIRE), Rose (2008), and Xiarchos and Vick (2011). 
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State Agricultural Characteristics 

Adelaja and Hailu 2008, Yin and Powers 2010, and Shrimali and Kniefel 2011 account 
for economic, political, and demographic characteristics. Our analysis focuses in 
agriculture, so in addition to such characteristics, we also account for differences in the 
agricultural sector of the States.   Structural characteristics of the agricultural sector 
should have an effect in the resulting renewable electricity adoption rates at the State 
level. In this section, we investigate which structural characteristics of the agricultural 
sector to include in the multivariate analysis as control variables. Even though most of 
the variables can serve as proxies to individual farmer characteristics at the aggregate 
level, they are analyzed for representing State conditions that increase the adoption 
probability for all farmers in the State. For example, organic acres can indicate a 
predisposition in the State’s agricultural sector for addressing environmental concerns.  
Another example is share of cattle operations; since a predominant use of renewable 
energy systems in agriculture has historically been for water pumping, “ranching” States 
with many cattle operations can be expected to have larger adoption rates. All variables 
are normalized (as averages by operation or shares in the agricultural sector of the State) 
and are extracted from the 2007 Census of Agriculture (National Agricultural Statistics 
Service 2009a). 

Correlation analysis for State agricultural characteristics with solar-PV and small-wind 
adoption rates are presented in table 9. We distinguish financial State variables like 
energy expenses by operation ( fuel expense and electricity expense22) and electricity used 
by operation (electricity used), derived by dividing electricity expense by the 2008 State 
electricity price average,23 and average funding share supporting renewable energy by 
operation24 (funding). Wealth and investment effects are examined through the financial 
State variables of average profitability by operation (net cash income), average land 
owned (land value), and machinery value by operation (machine value). Agricultural 
production mix variables like the share of cattle and fruit operations in the State (fruit, 
cattle) as well as organic and conservation acres by operation (organic and conservation) 
are also evaluated. Solar and wind systems are often used for water pumping associated 
with cattle and small fruit operations (Xiarchos and Vick 2011) and are potentially 
adopted by farmers that are concerned with the environment and practice organic or 
conservation practices, so such State characteristics can have an effect on State adoption 
rates. Last, we examine farmer constituent variables like the State average for acre size of 
an operation (size), the share of operations in the State that are connected to the Internet 
(internet), and the agricultural sector’s investment in the land expressed as the share of 
operations with full tenure of the land it operates (tenure).  

From the financial variables, electricity used, utility, and land value have significant 
correlations. The average funding share for renewable energy installations reported in 

                                                 
22 The variable “utility expense” is used as a proxy for electricity expense, although the utility expense 
would also include other utilities such as phones (National Agricultural Statistics Service 2009a).  
23 Electricity prices used are for residential customers in 2008 and come from the U.S. Energy Information 
Administration (2012a). 
24 The funding share for supporting renewable energy is extracted from the OFREPS (National Agricultural 
Statistics Service 2011). 
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NASS is not correlated with adoption share; this result is in line with the insignificant 
correlation for financial policy instruments. Average farm income (representing wealth  
and profitability in the State’s agricultural sector), and machine value (representing 
wealth as well as capital investment in the State’s agricultural sector) are not correlated 
with adoption shares. Average land value, another indicator for wealth, holds a 
significant correlation to solar-adoption shares, but not to wind-adoption shares.   Fuel 
costs are uncorrelated, while electricity cost and electricity use are highly correlated with 
adoption rates. Electricity cost and electricity use are highly correlated (r = 0.92) and 
consequently only one is used in the multivariate analysis.  

The product mix also seems significant. States with a lot of organic production are 
significantly correlated with solar and wind adoption rates. The share of cattle operations 
in the State is significantly correlated with wind adoption rates, while the share of fruit 
operations holds a significant relationship specifically with solar adoption rates. Internet 
connection share has a significant correlation with adoption shares, and tenure share has a 
significant correlation with the solar PV adoption share. Wind adoption rates are 
correlated with less variables (only about half) than solar adoption rates. 

Table 9. Correlation Analysis for State Agricultural Characteristics With Solar-PV and Small-
Wind Adoption Rates 

 

PVAS: Solar-PV adoption share. SWAS: Small-wind adoption share. 
Independent variable abbreviations summarized in Table 13 of the appendix. 
 
 
 

 PVAS SWAS 

Financial 
Fuel Expense 0.23 0.06 

Electricity Expense 0.62*** 0.3** 

Electricity Used 0.48*** 0.23 

Land Value 0.36*** 0.1 

Machine Value -0.13 -0.11 

Net Cash Income -0.02 -0.11 

Funding Share -0.01 -0.09 

Product Mix 
Conservation Acres 0.02 0.03 

Organic Acres 0.6*** 0.68*** 

Fruit  0.55*** 0.21 

Cattle  -0.23 -0.33** 

Constituent 
Internet  -0.33** -0.38*** 

Tenure 0.41*** 0.23 

Size 0.22 0.09 
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Modeling Aggregate Renewable Electricity Adoption 
 
The proportion of farms that adopt renewable electricity in a State is bounded between 0 
and 1. The logit transformation of data such as the proportion of adopters removes the 
upper and lower boundaries of the scale and spreads out the tails of the distribution.25 The 
logit transformation is recommended for proportions close to zero, as in the case of 
renewable electricity adoption on the farm, which is an extremely rare event. For 
example, the proportion of farms that have installed solar systems averages 0.005, with a 
range of 0.0004 in Iowa to 0.023 in California. The transformation of the renewable 
electricity adoption shares “stretches out” the proportions that are close to 0 and 1 and 
“compresses” proportions closer to 0.5, thus “normalizing” the data (figure 4).  
 
Figure 4. Kernel Density Plots for the Share of Farms with Solar Photovoltaic (PV) and Small- 
Wind Installations Before and After the Logit Transformation26 
	

	 	

	 	
	
  

                                                 
25 The zero wind-adoption observations in Delaware and South Carolina are treated as missing 
observations. 
26 A kernel density estimation is an alternative to a histogram that shows a visual impression of the 
probability density function of a variable, which in comparison to the discreteness of histograms is 
endowed with smoothness or continuity. 
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The model becomes: 

ln
1

,			 ~ 0, 	 

Aitchison (1986) calls the above transformation the additive logratio transformation and 
shows that z will follow a normal distribution, N(μ, σ2), if y follows an additive logistic 
normal distribution. Aitchison (1986) proposes testing the appropriateness of the model 
(if y is distributed as an additive logistic normal distribution) by testing if z is normally 
distributed.  
 
The model is fitted with ordinary least squares (OLS), and its formulation is influenced 
from the technology adoption literature. Due to the small number of observations, the 
empirical analysis needs to be parsimonious (Evans and Olson, 2003): the determinants 
are selected based on the preliminary correlation analysis in the previous section and a 
stepwise regression procedure. Results are presented in Table 10 and 11. Model 1 
includes factors of interest, while Model 2 includes only those factors that are found to be 
significant. The variance inflation factors (VIFs) suggest that multicollinearity does not 
pose a problem.  The model residuals are normally distributed as supported by the 
Shapiro-Wilk, Shapiro-Francia, and Skewness/Kurtosis tests in table 12 at the 1-percent 
marginal significance level. Consequently, our data support the distributional 
assumptions underlying the logit transformation regression model. We use robust 
standard errors, which Kieschnick and McCullough (2003) identify are more trustworthy 
for inferring significance with the logit transformation model. The logic transformation is 
worth exploring according to Smithson and Verkuilen (2006); it serves our rare event 
analysis well, while our data support that modeling approach. However, due to increased 
support for using the beta distribution for proportions (Kieschnick and McCullough 2003, 
Smithson and Verkuilen (2006), we also run the beta regression and show its results in 
tables 10 and 11. The beta regression assumes the dependent variable follows a beta 
distribution with two parameters μ and φ: 

; , 	 1 ,				0 1	 	 >0 

where 	 	 ;     
	
	 	  

The parameters ω and τ are shape parameters (ω pulls the density towards 0 and and τ 
toward 1), that are parameterized into a location (mean) μ and a precision φ parameter. 
The parameter φ represents dispersion because variance increases as φ decreases:  σ= 
μ(1- μ)/ φ+1. However, φ is not the sole determinant of dispersion; variance is a function 
of both the mean and parameter φ, since the dispersion of a bounded random variable 
depends partially on location. Still, the location parameter μ and the precision parameter 
φ place no restrictions on each other and can be modeled separately (Smithson and 
Verkuilen, 2006).   We run the beta regression on the formulation of variables appointed 
from the stepwise logit transformation model, and in accordance to Smithson and 
Verkuilen (2006), examine impacts of the variables both on the location (μ) and the 
dispersion (φ)27 of adoption rates.  Explicitly modeling dispersion on explanatory 
variables increases the Chi-square for both solar and wind adoption rates. The variables 
in the dispersion submodel that maximize the Chi-square are land value for solar 

                                                 
27 The precision factor expressing variance. 
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adoption rates and land value and tenure for wind adoption rates.  Slight differences in 
the mean results are noted. The beta models pick up significance for some additional 
variables to those found significant by the logic transformation regression. 
 
PV adoption rates are positively influenced by economic factors in the State. Higher 
electricity prices correspond to higher State adoption rates. Furthermore, solar potential 
also accounts for variation in PV adoption rates. Higher radiation is positively related to 
increased State-level adoption. Institutional influences also systematically account for 
adoption variation. The percentage of State electric customers served by an electric 
cooperative is negatively related to PV adoption rates. In terms of policies supporting 
renewable electricity, only the solar and distributed generation target has a significant 
effect on adoption rates. Correlation analysis already showed a lack of connection 
between financial policy instruments and adoption rates, regression analysis further 
shows no statistically significant relationship for net-metering and interconnection 
policies with State-level adoption shares. Land ownership, Internet connectivity, and 
organic practices in agriculture at the State level are also found to have a significant 
relationship to adoption rates. The beta regression also picks up a negative relationship 
between adoption rates and electricity used in the farm sector. 
 
The picture is similar for small-wind adoption rates. Share of customers served by 
electric cooperatives, organic practices, and Internet connectivity in the State have a 
systematic link to adoption shares for small wind, while net-metering and interconnection 
policies do not. The beta regression further shows a significant systematic positive 
relationship with electricity prices. However, some differences arise: adoption rates are 
not related to the intensity of the wind resource at the State level or land ownership; the 
beta regression also picks up that small-wind adoption rates are systematically related to 
the RPS for new renewables in addition to the solar and distributed generation target. 
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Table 10. Modeling Results for Solar-Photovoltaic (PV) Adoption Rates 
 
PVAS	 Logit		Transformation	

Regression	
Beta	Regression

	 Model	1	 Model	2 Model	1 Model	2	
	 	 Location	Submodel	(μ)	
Electricity	Price	 0.06*	 0.06** 0.04* 0.04**	
	 (0.03)	 (0.02) 0.02 0.02	
PV	Resource	 0.54***	 0.44*** 0.46*** 0.45***	
	 (0.19)	 (0.15) 0.13 0.13	
%	Coop	 ‐0.02***	 ‐0.02*** ‐0.01** ‐0.01**	
	 (0.01)	 (0.01) 0.01 0.01	
SDG	RPS	Target	 17.89*	 20.54** 31.79*** 28.18***	
	 (9.32)	 (7.98) 7.30 4.71	
Organic		 0.28***	 0.26*** 0.21*** 0.21***	
	 (0.05)	 (0.03) 0.03 0.02	
Internet	 4.86**	 5.41*** 7.50*** 6.93***	
	 (1.88)	 (1.06) 1.35 0.85	
Tenure	 5.80***	 5.26*** 5.12*** 4.97***	
	 (1.34)	 (1.02) 1.26 0.96	
Effective	Net	Metering	 ‐0.16	 0.01
	 (0.22)	 0.12
Effective		Interconnection	 0.09	 ‐0.16
	 (0.24)	 0.14
NR	RPS	Target	 0.62	 ‐0.23
	 (1.64)	 1.04
Electricity	Used	 ‐0.0004	 ‐9E‐04** ‐8E‐04**	
	 (0.0006)	 (4E‐04) 0.0004	
Fruit	 0.70	 0.22
	 (1.34)	 0.84
Land	Value	 3.40E‐08	 3.9E‐07* 4E‐07*	
	 (2.86E‐07)	 (2.2E‐07) 2E‐07	
Constant	 ‐16.	54***	 ‐15.79*** ‐16.77 ‐16.29***	
	 (1.90)	 (1.29) 1.16 0.96	
	 	 Dispersion	Submodel	(lnφ)	
Land	Value	 	 ‐2.7E‐06*** ‐3E‐06***
	 	 (8.3E‐07) 8E‐07
Constant	 	 9.97*** 9.87***
	 	 0.74 0.68
N	 48	 48 48 48	
R2	 0.86	 0.85 ‐ ‐	
F	 (13,34)=34.09 (7,	40)=57.89 ‐ ‐	
Wald	Χ2	 	 (13)=531.92 (9)=	516.45	
Prob	>	F		 0.00	 0.00 0.00 0.00	
Mean	VIF	 2.4	 1.56 ‐ ‐	
Max	VIF	 3.62	 1.89 ‐ ‐	

*,**,*** significant at 1, 5, and 10 percent respectively. Robust standard errors in parenthesis.  
Variable abbreviations summarized in Table 13 of the appendix. PVAS: Solar-PV adoption share. 
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Table 11. Modeling Results for Small-Wind Adoption Rates 
 
SWAS	 Logit		Transformation	

Regression	
Beta	Regression	

	 Model	1 Model	2 Model	1	 Model	2
	 Location	Submodel	(μ)
Coop	New	RPS	Target		 2.31 3.74***	 4.79***
	 (2.19) (1.44) (0.99)
SDG	RPS	Target	 35.45* 39.70** 19.55**	 17.58**
	 (19.79) (16.23) (9.81) (7.95)
%	Coop	 ‐0.03** ‐0.03*** ‐0.02**	 ‐0.02***
	 (0.01) (0.01) (0.01) (0.01)
Organic	 0.37*** 0.31*** 0.29***	 0.27***
	 (0.06) (0.05) (0.02) (0.02)
Internet	 4.81* 5.47** 5.50***	 4.86***
	 (2.73) (2.10) (1.65) (1.22)
Wind	Resource	 ‐0.03 ‐0.01 	
	 (0.19) (0.09) 	
Electricity	Price	 0.01 0.05(*)	 0.04**
	 (0.05) (0.03) (0.02)
Tenure	 2.27 2.28 	
	 (2.80) (2.26) 	
Effective	Net	Metering	 ‐0.41 ‐0.14 	
	 (0.30) (0.20) 	
Effective	Coop	Interconnection	 ‐0.05 ‐0.08 	
	 (0.27) (0.16) 	
Electricity	Used	 ‐0.18 0.29 	
	 (1.49) (0.98) 	
Cattle	 ‐0.0005 0.00 	
	 (0.0007) (0.00) 	
Constant	 ‐12.12*** ‐11.09*** ‐13.19***	 ‐11.15***
	 (2.34) (1.21) (1.54) (0.68)
	 Dispersion	Submodel	(lnφ)
Land	Value	 ‐3.8E‐06***	 ‐4.5E‐06
	 (1.1E‐05)	 (7.6E‐07)
Tenure	 ‐8.21* ‐5.58
	 (4.44) (2.22)**
Constant	 17.64***	 16.36
	 (2.75) (1.80)*
N	 46 46 46 46
R2	 0.72 0.68 ‐ ‐	
F	 (12,33)=15.00 (4,41)=39.40 ‐ ‐	
Wald	Χ2		 	 ‐ ‐ (12)=	730.59	 (6)=	748.22
Prob	>	F	or	or	Χ2 0 0 0 0	
Mean	VIF	 2.2 1.37 ‐ ‐	
Max	VIF	 3.3 1.7 ‐ ‐	

*,**,*** significant at 1, 5, and 10 percent respectively. Robust standard errors in parenthesis. 
Variable abbreviations summarized in Table 13 of the appendix. SWAS: Small-wind adoption share. 
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Table 12.  Normality Test for 2005 Logit Transformation Regression Models 
 
	 	 PVAS SWAS

	 Statistic	 Test P	value Test P	value
Skewness/Kurtosis	test	 Χ2	 1.41 0.493 4.30 0.12
Shapiro‐Wilk	 W	 0.98 0.62 0.96401 0.16
Shapiro‐Francia	 W'	 0.99 0.84 0.96346 0.14

PVAS: Solar-PV adoption share. SWAS: Small-wind adoption share 
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Summary and Concluding Remarks 
 
Adoption of solar and wind systems for generating on-farm electricity is not widespread, 
but installations on the farm have increased greatly, especially since 2005 following a 
trend of increased policy attention and investment in renewable energy. In 2009, policy 
support intensified as the American Recovery and Reinvestment Act of 2009 (ARRA) 
provided new incentives for the adoption of renewable energy systems, while an accruing 
number of States continue to adopt incentives to promote renewable energy installations. 
 
Though technology adoption is ultimately an individual farm-level choice determined by 
specific farm-level characteristics, analyzing State-level variables can explain underlying 
State variation in adoption rates, evaluate policy effectiveness, and even inform model 
formulation of microlevel analysis.  Our results suggest that some agricultural 
characteristics are found to relate to higher adoption rates: States with more organic acres 
per farm and more Internet connectivity have higher renewable electricity adoption rates. 
Higher energy price and solar resource have a significant and positive relationship with 
solar electricity adoption rates. For wind, economic influences do not appear to exhibit as 
strong of a systematic relationship with State adoption rates, with the exception of 
electricity price based on the beta regression. There are distinctions between wind and 
solar energy, but the differences are not dramatic. For example, tenure is significantly 
related to solar energy adoption but not wind adoption. Furthermore, wind energy 
adoption is influenced by both new renewable RPS target and solar/DG RPS target, while 
solar energy adoption is influenced by the solar/DG RPS target.  
 
Electric cooperative prevalence in the State is found to have a negative relationship to 
renewable electricity adoption share, which underlines the importance of policy 
formulation. Out of the list of policy variables we considered, the RPS is actually the 
only policy variable to show a large and systematic effect on State adoption rates. Our 
results agree with Menz and Vachon (2006), Adelaja and Hailu (2008), and Yin and 
Powers (2010), who found the RPS to be important for renewable electricity adoption; 
however, their results applied to utility-scale renewable electricity adoption, while this is 
the first study to show an impact at the distributed-generation scale. While both wind and 
solar adoption rates have a significant relationship to the solar/DG RPS, only wind is also 
significantly related to the new RPS standard. Our study does not find a systematic 
relationship for other State policy instruments, at least in the form captured by our policy 
variables. Financial policy instruments like rebates, grants, investment tax credits, and 
production incentives do not appear to be correlated to State adoption rates for solar and 
wind systems. Multivariate analysis further showed that effective (coop) net-metering 
and interconnection fail to reveal a systematic relationship with renewable electricity 
adoption rates on farms.   
 
While Yin and Powers (2010) showed that net metering and interconnection were  not 
effective in increasing renewable generation, their analysis focused on utility capacity, 
and we expected that effective net metering might have an impact on distributed 
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generation. Performance-based incentives, similarly to net metering, increase the positive 
flow of revenues from the renewable electricity system and reduce its payback period. 
Tax credits and direct payments, on the other hand, have the potential to reduce the high 
upfront capital cost of renewable energy installations that are considered impediments to 
adoption. For installation tax credits, the results further contradict the recent experience 
with the Federal investment tax credit, which increased to 30 percent under the Energy 
Policy Act of 2005 and resulted in a tripling of renewable energy installations between 
2005 and 2008 (Sherwood 2010, 2009).   

The incentives provided at the State level might indeed not influence adoption rates; 
adoption decisions might instead be determined by farmer characteristics. It is also 
possible that the effective incentives at the farm level are not sufficiently large to induce 
a significant impact.  Alternatively, incentive dummies and stringency averages might not 
be adequately capturing the prices and incentives farms face. For example, the form of 
the direct payments and benefits offered vary substantially from State to State, making a 
comparable quantitative representation difficult. Furthermore, the dataset excludes any 
incentives provided at the utility or local level, which could play a significant role in 
adoption choices. Future examination at a more disaggregate level might provide more 
insights. 

The lack of systematic impact of those policies on solar and wind system adoption seems 
to apply specifically to the agricultural sector, due to the smaller size bounds of 
renewable electricity installations used by farmers until 2009 as well as to institutional 
limitations. The negative relationship that the cooperative prevalence in electricity 
distribution has with solar-PV and small-wind adoption suggests that the institutional 
settings for rural energy policies are important determinants in the success of those 
policies. It also suggests that USDA’s Rural Development Utilities Programs, which 
helps rural utilities expand and keep their technology up to date while promoting rural 
infrastructure development, is in a unique position to work with electric cooperatives to 
promote distributed generation of renewable energy while increasing green job 
opportunities (Rural Development a, b). 

The study is the first to examine the role of electric cooperatives on solar and wind 
system adoption on farms. It contributes to the literature of policy impacts on States’ 
renewable energy investment by providing insights on the effect of policies geared 
towards distributed generation, specifically on renewable electricity production in 
agriculture. Future work that could better categorize the different State policies might 
provide better insights on the role of financial policy instruments in promoting small-
wind and solar installations in commercial, residential, as well as farm settings. The 
results of this study can assist States as they further refine and focus their policies to 
promote renewable electricity most effectively with limited budget resources. A more 
detailed examination of farm-level data from OFREPS in combination with the policy, 
institutional, and economic State-level variables identified in this report can provide a 
fuller and more realistic interpretation of the determinants of adoption of solar and wind 
energy generation.   
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Appendix 
 
Table	13.	Variable	Abbreviations	

Diesel	Price	 Diesel	Price	per	Gallon	
Electricity	Price	 Average	Residential	Retail	Electric	Price		per	Kilowatt	Hour	
PV	Resource	 Solar	potential,	(4.2‐6.2)	
Wind	Resource	 Wind	classification,	(1‐5)	
%	Coop	 Percentage	of	Customers	Served	by	Electric	Cooperatives	
NR	RPS	Target	 Renewable	Portfolio	Standard	Target	for	New	Renewables	
Coop	Exemption		 Cooperative	exemption	from		Renewable	Portfolio	Standard	
Coop	NR	RPS	Target	 Cooperative	Specific	Renewable	Portfolio	Standard	Target	for	New	Renewables		
SDG	RPS	Target	 Renewable	Portfolio	Standard	Target	for	Solar/Distributed	Generation	

Coop	SDG	RPS	Target	
Cooperative	Specific	Renewable	Portfolio	Standard	Target	for	Solar/Distributed	
Generation		

Net	Metering	 Net	Metering	Policy,	(0,1)	
Effective	Net	Metering	 Effective	Net	Metering	Policy,	(0,1)	
NM	P.	Excess	Electricity	 Net	Metering	Price	for	Excess	Electricity	per	Kilowatt	Hour	
Cooperative	Net	Metering	 Net	Metering	Policy	for	Cooperatives,	(0,1)	
Effective	Coop	Net	
Metering	

Effective	Net	Metering	Policy	for	Cooperatives,	(0,1)	

Interconnection	 Interconnection	Policy,	(0,1)	
Effective	Interconnection	 Effective	Interconnection	Policy,	(0,1)	
Coop	Interconnection	 Interconnection	Policy	for	Cooperatives,	(0,1)	
Effective	Coop	
Interconnection	

Effective	Interconnection	Policy	for	Cooperatives,	(0,1)	

Incentive	 Financial	Incentive,	(0,1)		
ITC	 Investment	Tax	Credit,	(0,1)	
PI	 Production	Incentive,	(0,1)	
DP	 Grant	and	Rebate	Program,	(0,1)	
ITC	rate,	%	 Investment	Tax	Credit	Rate,	Percent	
PI	rate,	$/kWh	 Production	Incentive	Rate	per	Kilowatt	Hour		
ITC	Years	 Investment	Tax	Credit,	Years	since	Enactment	
PI	Years	 Production	incentive,	Years	since	Enactment	
DP	Years	 Grant	and	Rebate	Program,	Years	since	Enactment	
REAP	#	 Number	of	Projects	funded	by		Rural	Energy	for	America	Program	
REAP	$	 Dollars	distributed	to	projects		funded	by		Rural	Energy	for	America	Program	
Fuel	Expense	 Fuel	Expense	by	Operation	
Electricity	Expense	 Electricity	Expense	by	Operation	
Electricity	Used	 Electricity	Used	by	Operation	
Funding	Share	 Funding	Share	Supporting	the	Cost	of	Photovoltaic	and	Small‐Wind		Installations		
Net	Cash	Income	 Net	Cash	Income	by	Operation	
Land	Value	 Land	Value	by	Operation	
Machinery	Value	 Machinery	Value	by	Operation	
Organic	 Organic	Acres	by	Operation	
Conservation	 Conservation	Acres	by	Operation	
Fruit	 Share	of	Fruit	Operations	in	State	
Cattle	 Share	of	Cattle	Operations	in	State		
Tenure	 Share	of	Operations	Tenure	with	Full	Tenure	of	Operated	Land	
Internet	 Share	of	Operations	Connected	to	the	Internet	
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Table	14.	Descriptive	Statistics		

Variable	 Mean	 Std.	Dev.	 CV	 Min	 Max	

Diesel	Price	 $3.61		 0.1 0.03 $3.43	 $3.85		
Electricity	Price	 $11.00		 3.19 0.29 $6.99	 $19.55		
PV	Resource	 4.92	 0.52 0.1 4.2 6.23	
	 	 	
ACV_Score	 56.65	 25.47 0.45 9 96	
%	Coop	 15.72	 13.01 0.83 0 48.64	

New	Renewable	Target	 0.09	 0.09 0.11 0 0.33	
Solar/DG	Target	 0.005	 0.01 2.27 0 0.05	

NM	P.	Excess	Electricity	 0.08	 0.058 0.648 0 0.19	

ITC	rate,	%	 0.06	 0.11 2.086 0 0.4	
PI	rate,	$/kWh	 0.02	 0.06 3.55 0 0.3	
ITC	Years	 9.18	 10.66 1.16 31 1	
PI	Years	 1.88	 0.646 0.34 3 1	
DP	Years	 7.68	 7.636 0.99 29 1	

REAP	#	 10.92	 15.036 1.38 0 61	
REAP	$	 350,151	 481,090 1.37 0 2,341,720	

Electricity	Expense	 2,942.59	 2,434.41 0.83 452.96 15,198.09	
Electricity	Used	 280.55	 221.28 0.79 64.16 1,100.51	
Land	Value	 847,956.2	 386,596.8 0.46 364,807 2,073,605	

Organic	 1.7	 2.22 1.31 0.03 9.64	
Fruit	 0.05	 0.07 1.58 0 0.46	
Cattle	 0.26	 0.14 0.55 0.06 0.53	

Tenure	 0.7	 0.08 0.12 0.5 0.89	
Internet	 0.59	 0.08 0.13 0.4 0.74	

		Variable	abbreviations	summarized	in	Table	13	of	the	appendix.	
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