Quantitative Assessment of the Risk of Listeriosis from Soft-ripened Cheese Consumption in the United States and Canada.

Régis Pouillot1, Loan Nguyen2, Sherri Dennis1

1 FDA/CFSAN, USA
2 Health Canada - Santé Canada
Background

• The United States and Canada continue to experience sporadic illness and outbreaks of listeriosis associated with the consumption of cheese
• FDA and Health Canada (HC) continue to evaluate the safety of cheese, particularly cheese made from unpasteurized milk

FDA and HC carried out a QMRA to evaluate the effectiveness of and the public health impact of processing and intervention strategies to reduce or prevent *Listeria monocytogenes* in soft-ripened cheeses.
Scope

• **Pathogen:** *Listeria monocytogenes*
• **Food:** Camembert, as an example of soft-ripened cheese
• **Population of Interest:**
 – General population of the U.S. and Canada
 – Subpopulations identified as at-risk in both countries
• **Endpoint:** Invasive listeriosis
• (primary) **Risk metric:** Probability of invasive listeriosis per soft-ripened cheese serving
• **Baseline**
 – “Pasteurized-milk cheese”, *i.e.* Soft-ripened cheese made from pasteurized milk, “stabilized process”

 Vs.

• **Alternatives**
 – “Raw-milk cheese”, *i.e.* Soft-ripened cheese made from raw milk, “traditional process”, Farmstead scale

 – “Raw-milk cheese” or “Pasteurized-milk cheese” according to various mitigation strategies
Framework / Model / Data

- Framework: *Codex Alimentarius*, FDA, HC

 - Exposure assessment
 - *L. monocytogenes* consumed
 - Hazard Characterization
 - Dose Response

- Fully quantitative risk assessment
 - Second-order Monte Carlo simulation

- Model structure based on
 - Literature, Previous risk assessments, Expert sources

- Data based on
 - Literature, Government surveys, Specific expert elicitations
Hazard Characterization

- Dose Response -

- Adapted from the FAO/WHO (2004) risk model
- Exponential dose-response models considering uncertainty

![Graph showing dose-response relationship with log10(prob of illness) and log10(Dose).]

Blue: Susceptible population
Red: Non-susceptible population
Exposure assessment
L. monocytogenes consumed

- **On Farm**
 - (Cross) contamination
 - Growth
 - Mixing
 - Removal

- **Cheese Processing**
 - Growth
 - Inactivation
 - Mixing
 - Partitioning
 - Removal
 - Cross Contamination

- **Transport and Marketing**
 - Growth

- **At Retail**
 - Growth

- **At Home**
 - Growth
 - Partitioning
Baseline Model

- No bacteria from milk ("full" pasteurization)
- Environmental contamination before aging
 - Prevalence and level inferred from Gombas et al, 2003 (+ backcalculation)
- Bacterial growth from contamination to consumption
 - Lag phase: Relative Lag Time concept
 - Growth during ripening: complex model considering T, pH, a_w and interactions
 - Growth during aging: square root model
 - Growth in solid media (vs. liquid) is considered
 - Parameters: meta-analysis of the available literature data
- Partition from serving to serving
Environmental Contamination

Inferences

Prevalence of contaminated cheeses in North-America

Prevalence of contaminated cheeses in North-America at retail
Beta(\(\alpha, \beta\))

Gombas et al. (2003)

\(Lm\) concentration in North-America at retail
\(\ln(c) \sim \text{Normal}(\mu, \sigma^2)\)

Number of \(Lm\) in a 250g cheese at retail in North-America

Number of \(Lm\) in a 250g cheese before aging

Growth during aging

Growth during marketing

Growth during storage at retail

Retail

Manufacturing

Number of \(Lm\) in a 250g cheese before aging

Prevalence of contaminated cheeses before aging

Simulations

Prevalence of contaminated cheeses at retail
Alternative Scenario: Raw-milk Cheeses

- Includes a farm model with
 - Mastitic cows and/or environmental contamination on farm
 - Mixing of milk from various cows
 - Growth in milk: in farm tank, tanker truck and dairy silo
- Growth in cheese considers the lower pH in “traditional” cheese process and regulatory requirement of at least 60 days storage prior to retail
- Considering additionally
 - Partition during cheese formation
 - Inactivation / Growth in cheeses during ripening
Milk Contamination

Process

Quarter 1
Quarter 2
Quarter 3
Quarter 4
Cow 1
Cow 2
Cow ...
Farm 1
Farm 2
Tanker truck
Dairy silo

Data

- Level of contamination in raw milk from mastitic cow
- Number of infected quarters given mastitis
- Yield reduction given mastitis
- Probability of mastitis in the herd given a positive bulk tank
- Number of mastitic cows on *L. monocytogenes* positive farm
- Number of cows per farm
- Milk production
- Prevalence of positive farm bulk tank
- Level of contamination in positive bulk tank
- Storage time and temperature in farm bulk tank
- Growth characteristics
- Storage time and temperature in tanker truck
- Storage time and temperature in dairy silo
Other Alternative Scenarios

- Raw-milk cheese, no 60-day aging restriction
- Raw-milk cheese, mild treatment that reduces the bacterial load in milk by $3 \cdot \log_{10}$
- Raw-milk cheese, test (and discard if positive) milk at every milking
 - 25 ml of raw milk from the farm tank
- Raw-milk cheese, test (and discard if positive) every lot of cheese
 - Composite sample of 25g from 5 cheeses
RESULTS
Baseline

L. monocytogenes cells per gram at process pathway steps in contaminated cheeses

Most of the growth occurs after retail

Mean >> 95th percentile

Great (serving to serving at random) variability in this model
Variability Vs. uncertainty

Variability Ratio \((B/A) = 8\,005\) Uncertainty Ratio \((C/A) = 9\)
Overall Uncertainty Ratio \((D/A) = 107\,933\)

- Variability $>>$ (considered) Uncertainty in this model
Baseline Results

(fully) pasteurized milk, “stabilized” cheese

<table>
<thead>
<tr>
<th>Estimated number of servings resulting in one case of invasive listeriosis.</th>
<th>Canada</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elderly</td>
<td>138 million</td>
<td>136 million</td>
</tr>
<tr>
<td>Pregnant</td>
<td>56 million</td>
<td>55 million</td>
</tr>
<tr>
<td>Immunocompromised</td>
<td>163 million</td>
<td>193 million</td>
</tr>
<tr>
<td>General population</td>
<td>7,290 million</td>
<td>8,644 million</td>
</tr>
</tbody>
</table>
Baseline Results
raw milk, “traditional” cheese

Estimated number of servings resulting in one case of invasive listeriosis.
(X-fold increased risk of invasive listeriosis vs. pasteurized milk soft-ripened cheese).

<table>
<thead>
<tr>
<th></th>
<th>Canada</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elderly</td>
<td>2.6 Million servings (×53)</td>
<td>1.2 Million servings (×112)</td>
</tr>
<tr>
<td>Pregnant</td>
<td>1.1 Million servings (×52)</td>
<td>570 000 servings (×96)</td>
</tr>
<tr>
<td>Immunocompromised</td>
<td>2.4 Million servings (×69)</td>
<td>1.2 Million servings (×157)</td>
</tr>
<tr>
<td>General population</td>
<td>105 Million servings (×69)</td>
<td>55 Million servings (×157)</td>
</tr>
</tbody>
</table>
Alternative Scenarios for Raw Milk cheese (Elderly population, Canada)

Mean Risk Higher than Pasteurized-milk

Mean Risk Lower than Pasteurized-milk

- Mean risk per serving
- Mean Reference (Pasteurized milk)
Alternative Scenarios for Raw Milk cheese (Elderly population, Canada)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Intra lot contamination</th>
<th>Logistic (Risk per serving)</th>
<th>Mean Risk Higher than Pasteurized-milk</th>
<th>Mean Risk Lower than Pasteurized-milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasteurized milk, Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw milk, Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw milk, Cheese lot tested (100%)</td>
<td>0.5% (vs. 2.5%)</td>
<td>-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intra lot contamination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intra lot contamination</td>
<td>1.0% (vs. 2.5%)</td>
<td>-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95% of the lot tested (vs 100%)</td>
<td></td>
<td>-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90% of the lot tested (vs 100%)</td>
<td></td>
<td>-10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Mean risk per serving
- Mean Reference (Pasteurized milk)
SUMMARY - CONCLUSIONS
“Complex Models to Answer Complex Questions”

• Extend the FDA/FSIS 2003 Risk Assessment from “store-to-fork” to “farm-to-fork”

• Comparing risk of listeriosis from pasteurized- vs. raw-milk cheese needed to consider
 – A full farm to fork model
 • Contamination in farm vs. in-plant contamination
 – A complex growth model considering
 • Lag time
 • Traditional vs. Stabilized manufacturing process
 • Interactions between environmental parameters
 • Growth in solid media

• Limitations – Caveats
 – Conclusions limited to the considered pathogen and the considered cheese
 – Dose-response
Take-home message

• Variability in the Risk linked to the subpopulation
 – Within a country: linked to the dose-response
 – Between countries: different consumption pattern, raw-milk prevalence

• Pasteurized-milk cheese:
 – Time / Temperature in refrigerator is the key factor that increases the risk of listeriosis from contaminated cheeses
 – The best strategy is nevertheless to reduce environmental contamination

• The risk from consumption of raw milk made cheeses is much higher than the risk for pasteurized milk cheeses in the U.S. and Canada
 – × 50 to 160 times higher

• The 60 day aging regulation could increase the risk of listeriosis for raw-milk soft-ripened cheeses

• For raw milk made cheeses, testing every cheese lot is the only alternative that reduces the risk below the level of risk observed in pasteurized milk made cheeses
Current / Next step

- Peer reviewed
- Draft report made available
- Public comments
 - Ended April 29th
 - 96 comments posted

- Now Considering the comments
Acknowledgments

• Mark Smith, Health Canada
• FDA and HC Risk managers

• Project supported in part by an appointment to the Research Participation Program at the CFSAN administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy and the US FDA.