Organic Agriculture Current Research and Perspectives on Yield Gaps

Houston Wilson and Krista Marshall University of California - Organic Agriculture Institute

February 24, 2023 – USDA Agricultural Outlook Forum 2023

Current Scale/Scope of Organic Agriculture

Current Scale/Scope of Organic Agriculture

What Do We Know About Organic Productivity / Yield Gaps?

Current Scale/Scope of Organic Agriculture

What Do We Know About Organic Productivity / Yield Gaps?

Current Knowledge Gaps and Policy Recommendations

Current Scale/Scope of Organic Agriculture

What Do We Know About Organic Productivity / Yield Gaps?

Current Knowledge Gaps and Policy Recommendations

Continued Expansion of Organic Production Various Economic, Social and Environmental Benefits

Total Organic Farms 20,000 17.445 18,000 16,585 16,000 14,217 14,000 12,634 10,903 12,000 10,000 8,000 6,000 4,000 2,000 2008 2014 2016 2019 2021

Top States: Certified Organic Acres				
	thousands			
California	814			
New York	331			
Montana	320			
Wisconsin	245			
Texas	241			

Top Crops (by value)

Various Marketing Activities

USDA NASS Certified Organic Survey 2021 Summary

https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Organic_Production/index.php

Positive Impacts of Organic Farming Biodiversity, Ecosystem Services, Impacts

Biodiversity Conservation

Soil Quality

Agroecosystem Function

Increased species richness (~34%) and abundance (~45%) across multiple taxa

Soil biology, carbon, fauna, organic matter etc.

Biological Control, Nutrient Cycling, Pollination etc.

Reganold & Wachter 2016; Seufert & Ramankutty 2017; Roos et al. 2018; Smith et al. 2019; Gong et al. 2022; Tamburini et al. 2022 Photos (L-R): Matthew Tschumi, Science Breaker; Krista Marshall, UC OAI; Jennifer Hopwood, Xerces Soc.)

As Multiple Benefits Become Apparent, Increased State/Federal Support to Organic

- Organic Research and Extension Initiative (OREI)
- USDA Transition to Organic Partnership Program
- NRCS EQIP Organic Initiative

Home > EQIP Organic Initiative

The National Organic Initiative, funded through the Environmental Quality Incentives Program (EQIP), is a voluntary conservation program that provides technical and financial assistance for organic farmers and ranchers, or those interested in transitioning to organic.

https://www.ams.usda.gov/services/organic-certification/topp https://www.nrcs.usda.gov/eqip-organic-initiative

As Multiple Benefits Become Apparent, Increased State/Federal Support to Organic

- California Dept. Food & Agriculture (CDFA)
- CDFA Office of Environ. Farming & Innovation
- CA Air Resources Board Scoping Plan 2022

https://ww2.arb.ca.gov/our-work/programs/ab-32-climate-change-scoping-plan/2022-scoping-plan-documents

Organic Agriculture

- Multiple Environmental, Social and Economic Benefits
- Growing Market Demand
- Increased Public Support

Current Scale/Scope of Organic Agriculture

What Do We Know About Organic Productivity / Yield Gaps?

Current Knowledge Gaps and Policy Recommendations

Concerns About the Productivity of Organic Production Systems

Focus on Yield - Biodiversity Conservation, Hunger

<u>THE WALL STREET J</u>	OURNAL.	Diversification practices reduce organic	
Can Organic Food Feed the World	to conventional yield gap		
Catherine Badgley says it's our best hope; Steve Savage say	ys the yields are too low	Lauren C. Ponisio ¹ , Leithen K. M'Gonigle ^{1,2} , Kevi C. Mace ¹ , Jenny Palomino ¹ , Perry de Valpine ¹ and Claire Kremen ¹	
Organic Farming Provides Reliable Environmental Benefits but Increases Variability in Crop Yields: A Global Meta-Analysis	Berkeley	Department of Environmental Science, Policy, and Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA 94720, USA Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA News	
Olivia M. Smith ¹⁺ , Abigail L. Cohen ² , Cassandra J. Rieser ³ , Alexandra G. Davis ³ , Joseph M. Taylor ² , Adekunle W. Adesanya ² , Matthew S. Jones ²⁴ , Amanda R. Meier ²⁵ , John P. Reganold ² , Robert J. Orpet ²⁴ , Tobin D. Northfield ^{24,6} and David W. Crowder ²	to bet RESEARCH, SCIENCE & ENVIRONMENT Can organic crops compete with industrial agriculture? By Sarah Yang, Media Relations DECEMBER 9, 2014 Image: Share 112 Image: Reddit Image: Email		
¹ School of Biological Solences, Washington State University, Pulman, WA, United States, ² Department of Entomology, Washington State University, Pulman, WA, United States, ³ Department of Crop and Sol Solences, Washington State University, Pulman, WA, United States, ⁴ Tree Fruit Research and Extensions Center, Washington State University; Wenatchee, WA, United States, ¹ Department of Entomology, University of Georgia, Athemes, A. United States, ⁹ Centre for Tropical Environmental Sustainability Science, James Cook University; Cairns, OLD, Australia			
To promote food security and sustainability, ecologically intensive farming systems should reliably produce adequate yields of high-matter food optimized to surface the surface optimized and promote social wellbeing.	Can we feed	10 billion people on organic	

Guardian farming alone? John Reganold

on reliable provisioning of vields, profits

Drawing Upon Hundreds of Scientific Studies

FIGURE 1 | Study locations for seven sustainability metrics: biodiversity (abundance and richness), soil carbon (organic carbon and carbon stock), crop yield, and profitability (benefit/cost ratios and production costs).

Smith et al. 2019a "Organic Farming Provides Reliable Environmental Benefits but Increases Variability in Crop Yields: A Global Meta-Analysis." *Frontiers in Sustainable Food Systems*

Organic yields ~20% lower than conventional

Smith et al. 2019a "Organic Farming Provides Reliable Environmental Benefits but Increases Variability in Crop Yields: A Global Meta-Analysis." *Frontiers in Sustainable Food Systems* Smith et al. 2019b "Landscape context affects the sustainability of organic farming systems" *PNAS*

Organic yields ~20% lower than conventional

Ponisio et al. 2015 "Diversification practices reduce organic to conventional yield gap" *Proceedings Royal Society B*

Organic outperforms conventional ~19% of the time

Knapp and van der Heijden 2019 "A global meta-analysis of yield stability in organic and conservation agriculture" *Nature Communications*

Organic Yields Yes They Can Be Lower, But It's Not That Simple

Yield Outcomes - Very Context Specific Crop Type, Rotations, Polycultures etc.

- Relative performance of organic is highly variable
- Outcomes influenced by a wide variety of factors

Variable			Low performance	High performance	References
			Cereals	Fodder crops	(18, 20, 21)
	, let	Destation	Nonlegumes and annuals	Legumes and perennials	(18, 21)
	unit area	Production per	Lower N inputs in org	Higher N inputs in org	(18, 19)
		No rotation	More rotation in org	(18, 19)	
			Strong acidic and alkaline soils	Neutral soils	(18, 19)

Seufert and Ramankutty 2017 "Many shades of gray – the context-dependent performance of organic agriculture" *Science Advances*

Variable		Low performance	High performance	References	
		Cereals	Fodder crops	(18, 20, 21)	
	Production per unit area	Nonlegumes and annuals	Legumes and perennials	(18, 21)	
تقوليمهم ويتج		Lower N inputs in org	Higher N inputs in org	(18, 19)	
20.00		No rotation	More rotation in org	(18, 19)	
		Strong acidic and alkaline soils	Neutral soils	(18, 19)	
		Arthropods and Birds	Plants	(32, 34)	
		Predators, herbivores, and decomposers	Pollinators and producers	(32, 33)	
	Species richness	Pastures	Cereal fields	(32, 34)	
	and abundance	Extensive agriculture in region	Intensive agriculture in region	(34)	
		Complex landscapes	Simple landscapes	(32, 33)	
		Outside fields/at farm level	Within fields	(34)	
	Soil organic carbon	Same organic matter inputs in org and conv	Higher organic matter inputs in org	(39, 40, 42)	
	Energy use	Fruits and vegetables	Other field crops	(58)	
	GHG emissions	Multicropping systems	Monocropping systems	(58)	
	N loss	High N inputs in org	Low N inputs in org	(60)	
	P loss	Organic amendments	Legume-based systems	(65)	
	N and P loss	Horticultural systems	Arable systems	(63)	
		No access to premium prices	Access to premium prices	(81)	
*	Profitability	Regions with high labor cost	Regions with low labor costs	(81)	
()	Autonomy	Reliance on export markets	Participation in alternative food networks	(82, 87)	
ų.	Pesticide exposure	Crops with low pesticide use and/or regions with strong pesticide regulation and enforcement	Crops with high pesticide use and/or regions with weak pesticide regulation and enforcement	_	
	Rural employment	-	Regions with high rural unemployment	_	

Seufert and Ramankutty 2017 "Many shades of gray – the context-dependent performance of organic agriculture" *Science Advances*

Yields in Organic Systems Key Factor - Differences Across Crop Types

Higher Gaps – Cereals + Roots/Tubers Lower Gaps – Fruit/Nut Systems + Pulses

Smith et al. 2019a "Organic Farming Provides Reliable Environmental Benefits but Increases Variability in Crop Yields: A Global Meta-Analysis." *Frontiers in Sustainable Food Systems*

Yields in Organic Systems Key Factor - Differences Across Crop Types

Higher Gaps – Cereals + Roots/Tubers Lower Gaps – Fruit/Nut Systems + Pulses

Ponisio et al. 2015 "Diversification practices reduce organic to conventional yield gap" *Proceedings Royal Society B*

Yields in Organic Systems Key Factor - Crop Diversification Practices

Polycultures/Diversification and Rotations Tend to Minimize Yield Gaps

Input-substitution approach doesn't work well for organic

Variable		Low performance	High performance	References
		Cereals	Fodder crops	(18, 20, 21)
14	Production per	Nonlegumes and annuals	Legumes and perennials	(18, 21)
		Lower N inputs in org	Higher N inputs in org	(18, 19)
Sto.	unit area	No rotation	More rotation in org	(18, 19)
		Strong acidic and alkaline soils	Neutral soils	(18, 19)

Seufert and Ramankutty 2017 "Many shades of gray – the context-dependent performance of organic agriculture" *Science Advances*

Yields in Organic Systems Key Factor - Crop Diversification Practices

Polycultures/Diversification and Rotations Tend to Minimize Yield Gaps

Input-substitution approach doesn't work well for organic

Ponisio et al. 2015 "Diversification practices reduce organic to conventional yield gap" Proceedings Royal Society B

Optimizing Organic Production

- Organic systems are not necessarily inherently low yielding
- Input-substitution approach inadequate
- Breeding, crop rotations, polyculture etc. are fundamental

Current Scale/Scope of Organic Agriculture

What Do We Know About Organic Productivity / Yield Gaps?

Current Knowledge Gaps and Policy Recommendations

Optimizing Organic Production Systems Additional Research/Extension is Required

Historically, there has been relatively little funding for organic agriculture research and extension

UNIQUE TOTALS FOR ORGANIC-PERTINENT RATING CATEGORIES 1-6						
Category	1-OS+	2-OS	3-OE	4-OC+	5-OC	6-PO
Total	5	8	7	14	267	215
STRONG ORGANIC Projects (OS+, OS, OE, OC+) = 34 WEAK ORGANIC Projects (OC) = 267 POTENTIAL/TRANSITIONAL ORGANIC = 215						

How can we compare organic to conventional if these systems have not been sufficiently optimized?

Lipson (1997) "Searching for the O-Word" Organic Farming Research Foundation

Optimizing Organic Production Systems Additional Research/Extension is Required

USDA Organic Research and Extension Initiative (OREI) - a major step forward

Delonge et al. 2016 "Investing in the transition to sustainable agriculture" *Environmental Science and Policy* Miles et al. 2017 "Triggering a positive research and policy feedback cycle to support a transition to agroecology and sustainable food systems" *Agroecology and Sustainable Food Systems*

Optimizing Organic Production Systems Additional Research/Extension is Required

That said, complimentary resources are still needed at the state level

Research and Policy Recommendations

Research to Achieve Full Potential of Organic

- Tailored to unique ecological conditions
- Diversified farming, crop rotations etc.
- Crops and animals bred for organic context
- More appropriate technology for organic systems
- Support for Farmers to Transition to Organic
 Both practices and production models

Research and Policy Recommendations

- **New Approaches and Metrics**
- Emphasis on transdisciplinary approaches
- New Systems of Evaluating Outcomes
- Ecological, social and economic dimensions
- Both within and beyond the farm

UC Organic Agriculture Institute Building Institutional Infrastructure to Support Organic Agriculture in California

http://organic.ucanr.edu/

https://news.ucsc.edu/2022/09/usda-organic-agriculture-grant.html https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=53611 https://agnetwest.com/industry-needs-will-guide-uc-organic-agriculture-institute-efforts/

THANK YOU!

Houston Wilson hwilson@ucanr.edu http://organic.ucanr.edu/

University of California Agriculture and Natural Resources