How water management agreements are likely to impact agriculture in California and beyond

USDA 100th Annual Agricultural Outlook Forum February 16, 2024

Alvar Escriva-Bou, PhD Assistant Professor, University of California Los Angeles

Co-authors: Ellen Hanak, Josue Medellin-Azuara, Josh Viers, Andrew Ayres, Caitlin Peterson and Spencer Cole

This work is supported by Agriculture and Food Research Initiative Competitive Grant no. 2021-69012-35916 from the USDA National Institute of Food and Agriculture

The Western US is facing an unprecedented water crisis

- Competing demands are increasing water conflicts
 - Population growth increases water needs for cities and food production
 - Degraded ecosystems also need more water
- Climate change intensifies droughts and floods

Reconstructed Soil Moisture and Anthropogenic Effect

Year

Source: Williams et al. (2022). Rapid intensification of the emerging southwestern North American megadrought in 2020–2021

As a major water user, agriculture is highly vulnerable

Source: Escriva-Bou et al. (2016). Accounting for California's Water

Groundwater is being depleted like never before

Source: New York Times (2023). America Is Using Up Its Groundwater Like There's No Tomorrow. Data from GebreEgziabher, Jasechko and Perrone, Nature Communications (2022)

Although there are important challenges, agriculture will still thrive in the Western US

- Embrace the challenges
 - A reduction in water availability will translate in a reduction in farmland
- Define successful transition pathways
 - Water trading
 - Water partnerships
 - Land repurposing

The San Joaquin Valley is at a pivotal moment

- > 50% of California's agricultural output
 - Fresno, Kern and Tulare Counties are the nation's top three agricultural counties
- The valley is ground zero for implementing the Sustainable Groundwater Management Act (SGMA)
 - All basins must achieve sustainability by 2040

Source: Hanak et al. (2017). Water stress and a changing San Joaquin Valley

Agriculture is a key driver of the San Joaquin Valley's economy

Water challenges loom over California's San Joaquin Valley

 By 2040, average annual water supplies could decline by 20% (3.2 maf)

Water challenges loom over California's San Joaquin Valley

- By 2040, average annual water supplies could decline by 20% (3.2 maf)
- Without adaptations:
 - ~900,000 acres of lands fallowed, ~50,000 jobs lost, and a 2.3% decline in GDP

Share of cropland fallowed without adaptations

The water problem in the Colorado basin is similar

 It provides water to 7 states and Mexico

Source: PPIC (2018). The Colorado River.

The water problem in the Colorado basin is similar

- It provides water to 7 states and Mexico
- Allocations are based on outdated hydrological assumptions
- Current allocations exceed supplies in 2-3 maf/year
 - ~13-20% of total supplies

Source: Schmidt et al. (2023). The Colorado River water crisis: Its origin and the future

Water trading and supply strategies can soften the impacts of water stress

Water trading would significantly reduce economic losses

Water trading and supply strategies can soften the impacts of water stress

- Water trading would significantly reduce economic losses
- New supplies would reduce fallowing and mitigate losses

-60,000

Water trading and supply strategies can soften the impacts of water stress

- Water trading would significantly reduce economic losses
- New supplies would reduce fallowing and mitigate losses
- Productivity growth could raise farm output above today's levels

-60,000

Water partnerships and expansion of supply infrastructure options

- Partnerships can increase resilience for farms and cities:
 - Increase overall supplies for farms to address supply constraints
 - Build urban resilience during droughts
- Connecting infrastructure and water sharing agreements are key to promote these options

The State Water Project connects the San Joaquin Valley and Southern California. Photo: DWR

Regional water demands and demand projections have been falling in Southern California

Source: Escriva-Bou et al. (2020). Water Partnerships between Cities and Farms in Southern California and the San Joaquin Valley

There is a window of opportunity for partnerships between Southern California and San Joaquin Valley

- Two major shifts:
 - Agriculture: SGMA heightens interest in expanding supplies, underground storage
 - Urban areas: Demand reductions reduce supply pressures during normal/wet years. Droughts now major concern
- State Water Project infrastructure facilitates partnerships

The SWP is the key link between coastal cities and San Joaquin Valley farms

Source: Escriva-Bou et al. (2020). Water Partnerships between Cities and Farms in Southern California and the San Joaquin Valley

Existing partnerships use the water grid to manage droughts, scarcity, infrastructure costs

- Underground storage in southern SJ Valley
- Long-term transfers of dry-year water from Yuba River
- Various Colorado River trading and storage partnerships
- Interstate partnerships

What types of partnerships are possible?

Co-investments

- Farmers invest in alternative water supplies, conservation in cities
- Urban agencies expand investments in water storage, conveyance in ag regions

Unbalanced exchanges

 Farmers get a more water in normal/wet years in return for supplying some water during droughts

Mixed strategies

Co-investments + unbalanced exchanges

Opportunities related to future urban growth

Cities invests in long-term supplies, with near-term transfers to ag

Managing water and land transitions

- There are some options for keeping lands productive with less water
- Providing economic alternative to farmers can align water and land policies
- Reduce negative impacts of fallow lands

 Solar is promising (135–215K acres in the valley), but transmission is a bottleneck

Source: Ayres et al. (2023). Managing Water and Farmland Transitions in the San Joaquin Valley

- Solar is promising (135–215K acres in the valley), but transmission is a bottleneck
- Much of the valley floor is suitable for forage with supplemental irrigation

Lands suitable for water-limited forage

Source: Ayres et al. (2023). Managing Water and Farmland Transitions in the San Joaquin Valley

- Solar is promising (135–215K acres in the valley), but transmission is a bottleneck
- Much of the valley floor is suitable for forage with supplemental irrigation
- Public investments in habitat could mitigate historical habitat loss

Lands suitable for water-limited forage

Source: Ayres et al. (2023). Managing Water and Farmland Transitions in the San Joaquin Valley

- Solar is promising (135–215K acres in the valley), but transmission is a bottleneck
- Much of the valley floor is suitable for forage with supplemental irrigation
- Public investments in habitat could mitigate historical habitat loss
- Recharge basins can be managed for multiple benefits

- Solar is promising (135–215K acres in the valley), but transmission is a bottleneck
- Much of the valley floor is suitable for forage with supplemental irrigation
- Public investments in habitat could mitigate historical habitat loss
- Recharge basins can be managed for multiple benefits
- New developments could bring revenues and save water

Source: Ayres et al. (2023). Managing Water and Farmland Transitions in the San Joaquin Valley

Embracing the challenges and planning for successful transitions pathways is key for the future of ag

- Assess the water constraints and define realistic plans
- Innovate with new approaches:
 - Water trading
 - Water partnerships
 - Land repurposing

Effective and equitable solutions will require cooperative approaches

- Planning
 - Strengthen coordination across basins and sectors
- Flexible regulatory approaches
 - Promote effective and responsible water trading
- Make strategic water, land and energy infrastructure investments
- Provide local, state, federal financial incentives
 - Align regulatory and fiscal incentives

Thank you!

Don't hesitate to send me an email if you have any questions, comments or suggestions

Alvar Escriva-Bou escriva@ucla.edu

