Cotton Abandonment

Darren Hudson Combest Endowed Chair Assoc Dean for Strategic Initiatives Texas Tech University

Abandonment

- Abandonment is believed to be caused by a variety of factors:

- Weather and related variables, obviously
- Crop insurance benefits
- Farm bill attributes
- Cost of production

Texas Abandonment

Texas Abandonment Rate

Source: USDA, NASS

El Niño/La Niña-ENSO Values

Average ENSO values (SEP-AUG); Source: NOAA

ENSO Values and Planted Cotton Acres

Average Annual ENSO Value vs Texas Abandonment Rate; Source: USDA-NASS, NOAA

Pre-season (Sep-May) Moisture, High Plains Average; Source: NOAA

Other Factors

Growing Degree Days (May-Sep), Lubbock, TX; Source: NWS

Other Factors

0.4

0.3

0.2

0.1

0

Proportion of Texas Cotton Acres Insured at 65% or higher (all types); Source: RMA

 $\langle \phi^{\alpha}, \phi^{\alpha}, \phi^{\beta}, \phi^{\beta$

Other Factors

Cost of Production Share at Planting

Share of Total Cost of Production at or before Planting, Prairie Gateway; USDA-ERS

Analysis

Variable	Coefficient	Standard Error	t-value	p-value
Intercept	12.609	6.103	2.066	0.047
ENSO	-0.053	0.027	-1.937	0.061
GDD	-0.006	0.003	-2.187	0.036
GDD ²	0.000	0.000	2.316	0.027
Insurance	0.339	0.187	1.815	0.079
Pre-Season	0.037	0.375	1.001	0.324
Moisture				
Farm Bill	0.779	0.955	0.812	0.422
Harvest Price	-0.169	0.163	-1.042	0.304
In*Pre	-0.075	0.052	-1.433	0.161
In*FB	-0.824	1.038	-0.794	0.432
F-value = 8.051, A	Adjusted $R^2 = 0.602$			

Table 2. Regression Results of Texas Cotton Abando
--

The Role of Moisture on Insurance

Predicted Abandonment vs. Total Insurance Effect (w w/o Pre-season Rainfall

Discussion

- There is a significant upward trend in abandonment in Texas over time.
 - Mean of 10% in 1980 to a mean of 34% in 2022
- Higher proportion of acres in TX means a higher US average abandonment, on average
- Slight downward trend in ENSO values (move towards more La Niña average ENSO)
 - Lower ENSO values are associated with higher abandonment
- Crop insurance matters...but maybe not as much as everyone thinks
 - With no pre-season moisture considered, impact of crop insurance is large
 - Considering average pre-season moisture, the impact of crop insurance is muted

Conclusions

- At the margin, crop insurance influences abandonment decisions
 - BUT, that relationship is complex
 - Insurance price
 - Pre-season and in-season moisture
 - Cost of production
- ENSO values are important
 - Reflect dominant weather patterns; suite of weather variables that will be impacted
- Predicting abandonment is difficult
 - Variance is greater in the La Niña phase than El Niño phase
- Harvested acres determine production in cotton, not planted. Understanding abandonment is critical to projections of cotton