FDA Risk Modeling Tools for Enhancing Fresh Produce Safety: Modeling the Interface between the environment and Produce

Presented at the ORACBA Science Policy and Risk Forum on July 23, 2014

by

David Oryang, Sherri Dennis, and Yuhuan Chen

Center for Food Safety and Applied Nutrition
U.S. Food and Drug Administration
College, Park, MD
Outline

• The need for Risk Assessment
• The challenges of modeling the interface between the environment and fresh produce.
• FDA’s Risk Modeling Tools for Enhancing Fresh Produce Safety
 – FDA-iRISK®,
 – QPRAM, and
 – GIS-Risk
• Data Needs
• FDA Data Acquisition efforts from Field Trials and Sampling
• Conclusion
Risk Assessment is…

• A process to describe what we know and how certain we are of what we know
• From Farm to Fork
• Answers 4 key questions:
 – What can go wrong?
 – How likely is it to occur?
 – What are the consequences?
 – What factors can influence it?
• Considers uncertainty

[Image 0x463 to 720x540]
Uses of risk assessment at FDA

• Inform risk managers of where and when to look, to:
 – set priorities / allocate resources
 – identify major risk-contributing steps in farm-to-fork continuum

• Enable risk managers to evaluate effectiveness of interventions:
 – potential or equivalent control measures
 – proposed standards and criteria
 – contribution of compliance to risk management

• Inform risk communicators in:
 – developing communication/outreach messages
 – determining subpopulations at increased risk
 – assessing uncertainty and variability
Examples of FDA risk tools

Quantitative Risk Assessment

- *Vibrio* in raw oysters (2005)
- HPAI in poultry & eggs (2010 w/USDA)
- FDA-iRISK (2012 w/RSI)
- Retail deli cross-contamination (2013 w/FSIS)
- *Arsenic* in Apple Juice - Draft 2013
- *Listeria* in soft cheese (w/HC) – draft 2013
- GIS-Risk tool (w/ NASA, ARS, APHIS)
- Norovirus in shellfish (w/Canada)
- Produce QPRAM (w/RTI)

Semi-Quantitative Risk Assessment

- Domestic Priorities List (2007)
- Produce Risk Ranking Tool (2009)
- Drug residues in milk
- FSMA Section 204 High Risk Foods Model

Risk Profile (Qualitative)

- Pathogens in cheese
- Pathogens & filth in spices -draft 2013
Division of Risk Assessment Staff

Director: Sherri Dennis

Risk Assessment Coordination Team
- **Technical Writing & Communication:**
 - Susan Mary Cahill
- **Risk Assessor/ Project Managers:**
 - Wendy Fanaselle
 - Jane Van Doren
 - Grace Kim
- **Risk Analyst/ Modelers:**
 - Yuhuan Chen
 - Régis Pouillot
 - Karin Hoelzer
 - David Oryang
- **Data & Information Management:**
 - Lori Papadakis
 - Zhuoying Chen (Student)
 - Gregory Hay (Student)

Chemical Hazards Assessment Team
- **Supervisor:**
 - Deborah Smegal
- **Toxicologists:**
 - Sue Anne Assimon
 - Clark D Carrington
 - Kiros Hailemariam
 - Parviz Rabbani
 - Shyy Hwa Tao
- **Total Diet Study:**
 - Mark S Wirtz
 - Stephanie Briguglio
 - Dana Pennesi
 - Judith Spungen
Enteric pathogens are transferred to produce via spatio-temporal interactions with domestic and wild animals, wind, water, soil, machinery, humans and climate.
FDA Models with Applicability to Produce

- **FDA-iRISK®**: An interactive, Web-based, risk assessment modeling tool (freely available at http://foodrisk.org/exclusives/). It quantitatively compares and ranks risks posed by multiple food/hazard combinations taking into account consumption, dose-response relationship, as well as contamination in the food supply system, from production to consumption. It can provide an industry-wide or farm-level perspective of the risk.

- **GIS-Risk**: A collaboration between FDA and NASA, to link geographic information systems with predictive risk-assessment models. The ultimate goal is to forecast when, where, and under what conditions microbial contamination of crops is likely to occur, leading to human illness. It provides a regional perspective of risk.

- **QPRAM**: The Quantitative Produce Risk Assessment Model (QPRAM) is an agent–based, virtual laboratory that models specific practices and risk factors. QPRAM tracks each unit of produce; keeping a history of how, when, where, and by how much it was contaminated. It provides a facility (individual farm or processing facility) level perspective of risk.
NAS Recommendation

...to develop tools for risk ranking in a risk-based system for enhancing food safety decision-making.

“A good risk-ranking model should be fit for purpose and be scientifically credible, balanced, easy to use, and flexible.”

(National Academy of Sciences, 2010)
FDA-iRISK is:

an interactive, web-based system that enables users to conduct fully quantitative, fully probabilistic risk assessments of food safety hazards relatively rapidly and efficiently.
Users Develop and View Risk Models via Online Interface

Risk Models

Select a hazard, food, process model or risk scenario to work with on the tabs below, or add a new one.

Dose response models and hazard metrics are defined as part of hazards. Consumption models are included as part of foods. Process models modify hazard concentration in the food as the food is processed.

Computed risk scenarios combine information from previously-defined food, hazard, dose response, hazard metric, consumption and process model entries to compute a risk measure. Specified risk scenarios use provided data to compute the risk measure for a previously-defined food and hazard.

For a complete description, review the Quick Start Tutorial and User Guide on the Help page before beginning.

Show models for: risk@foodrisk.org

Hazards

Select a hazard from the list below to view.

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Type</th>
<th>View</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aflatoxin B1</td>
<td>Chemical</td>
<td></td>
</tr>
<tr>
<td>Ammonia from Refrigerant Spill</td>
<td>Chemical</td>
<td></td>
</tr>
<tr>
<td>L. monocytogenes</td>
<td>Microbial Pathogen</td>
<td>View</td>
</tr>
<tr>
<td>Salmonella</td>
<td>Microbial Pathogen</td>
<td>View</td>
</tr>
</tbody>
</table>
Novel Capacities

- Allows risk comparisons across many dimensions
 - Hazards (microbial and chemical)
 - Foods/Commodities
 - Production/processing/handling scenarios
 - Populations

- Enables relatively rapid risk assessments and evaluation of intervention effectiveness
- Provides a straightforward user interface
- Allows online access to ensure broad accessibility, saving and sharing data
How FDA-iRISK Works

• Integrates data & information on seven elements…

 food
 hazard
 population
 process model (food production/ processing/ handling)
 consumption patterns
 dose-response
 health effects

…using the built-in templates & generates risk estimates through Monte Carlo simulations
Address the question: What **risk** does a food-hazard pair pose to a population?
iRISK Model Structure (Microbial Hazards*)

Key:

User input

iRISK output

* Also applicable to chemical hazards that cause acute effects.
FDA-iRISK is:
A risk ranking tool to compare public-health impact of microbial and chemical hazards (and more…)

One Hazard in Different Foods
- Salmonella
 - Fresh Produce
 - Shell Eggs
 - Nuts

Multiple Hazards in a Single Food
- Leafy Greens
 - Norovirus
 - Cyclospora

Multiple Hazards in Multiple Foods
- L. monocytogenes in Soft Cheese
- Salmonella in Peanut Butter
- Scombrototoxin in Raw Tuna
- Arsenic in Juices
FDA-iRISK Output Example:
Compare Health Effects of Multiple Hazard-Food Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Eating Occasions</th>
<th>Total Illnesses</th>
<th>Mean Risk of Illness</th>
<th>DALYs</th>
<th>Per Eating Occasion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella in Peanut Butter (post roasting), Total Population (Acute, Computed)</td>
<td>1.70E+10</td>
<td>3320</td>
<td>1.95E-7</td>
<td>62.5</td>
<td>3.67E-9</td>
</tr>
<tr>
<td>L. monocytogenes in Soft Ripened Cheese, Pregnant Women (Acute, Computed)</td>
<td>1.20E+7</td>
<td>0.805</td>
<td>6.70E-8</td>
<td>11.1</td>
<td>9.25E-7</td>
</tr>
<tr>
<td>L. monocytogenes in Soft Ripened Cheese, Adults 60+ (Acute, Computed)</td>
<td>1.80E+8</td>
<td>2.25</td>
<td>1.25E-8</td>
<td>5.79</td>
<td>3.22E-8</td>
</tr>
<tr>
<td>L. monocytogenes in Soft Ripened Cheese, Intermediate-Age Population (Acute, Computed)</td>
<td>1.70E+9</td>
<td>0.213</td>
<td>1.25E-10</td>
<td>1.06</td>
<td>6.24E-10</td>
</tr>
</tbody>
</table>
Current FDA-iRISK®: Benefits

- Predict risks / compare burdens of illnesses
 - Rank them, e.g. 50 food-hazard pairs

- Quantify / compare effectiveness of interventions
 - Predict reductions in risks and burdens

Faster, user-friendly information for timely decisions
Portal to FDA-iRISK®

FDA-iRISK®, a new Web-based, comparative risk assessment tool, has become available for public use. It enables users to compare and rank risks from multiple foodborne microbial and chemical hazards and to predict effectiveness of prevention and control measures. Risk managers and other stakeholders can use FDA-iRISK®'s estimates of public-health impact to inform food-safety policy and management decisions.

FDA-iRISK® has many built-in features that allow users to conduct fully quantitative, fully probabilistic risk assessments relatively rapidly and efficiently. This peer-reviewed tool enables users to build scenarios that reflect their real-world or theoretical food-safety issues. Users may then compare risks and assess the impact of interventions, for example, or vary the data they enter to explore how changes in various practices in the food chain would affect public-health outcomes.

The FDA-iRISK® application can be found at http://irisk.foodrisk.org.

Peer-reviewed journal article on FDA-iRISK® and case studies on microbial hazards.

Quick Start Guide

User Guide

For more information about FDA-iRISK®, please see FDA's fact sheet for a general audience or a technical audience.
What can it do?

- Quickly compare risk from many types of hazards.
 - various points in supply chain
 - different populations
- Predict effectiveness of interventions.
- Express results using a variety of metrics.
- Peer Reviewed

Public version available at http://foodrisk.org since October 2012
Acknowledgements

• FDA
 – Sherri Dennis
 – Yuhuan Chen
 – Regis Pouillot
 – Karin Hoelzer
 – David Oryang

• RSI
 – Greg Paoli
 – Todd Ruthman
 – Emma Hartnett
 – Margaret Wilson

• JIFSAN
 – Kyle McKillop

We are grateful to the many experts who provided invaluable input and critique to assist in the development and refinement of the FDA-iRISK system, including:

• members of the IFT expert panel,
• Risk Sciences International,
• RTI International, and
• external peer reviewers.
QPRAM

PRODUCE SAFETY MODELING TOOL
QPRAM (a virtual farm model)

Purpose: Model contamination of fresh produce during growth, harvest, processing, transport, retail, and preparation for consumption

What can it do?

- An individual facility perspective of contamination events.
- Represents potential interactions among produce units and specific risk factors in the produce environment.
- Explicitly models change in the contamination status of units of fresh produce (e.g., heads of lettuce) with respect to time during multiple stages

Model tracks individual units

Model interaction of produce, domestic and wild animals, wind, water, soil, machinery and humans
QPRAM Models the interaction of produce, domestic and wild animals, wind, water, soil, machinery and humans, and tracks contamination.
QPRAM uses the agent-based modeling (ABM) framework.
QPRAM Provides a flexible framework for selecting risk factors
Defining a scenario in the production stage

You can define your interest areas (i.e., farm and surrounding sources of contamination) using the interactive map tool below.

- Enter your area address or zip code into the search box to zoom the map to your location of interest.
- Select an interest area from the list in the left panel (e.g., farm).
- Draw the interest area on the map. Depending on the interest area type, you will either draw a polygon or a line. Double-click to finish drawing.
- Click 'Save' to add the interest area to your scenario.
- The 'Summary' tab will show a list of the interest areas you have added. Click 'Delete' next to an interest area to remove it from your scenario.
Example risk factor: wild animal movement
Example risk factor: run-off from neighboring animal farms
Site-specific, risk-based approach for microbiological sampling

High risk locations due to wild animal encroachment

High risk locations due to a potential flooding from the neighboring water bodies

High risk locations due to a potential run-off from a neighboring animal farm
QPRAM Site-specific, risk-based approach for microbiological sampling

High risk locations due to a potential flooding event in the lower left area.

High risk locations due to wild animal access - no fence

High risk locations due to wild animal access - broken fence

Site specific sampling scenarios. What is the best sampling pattern?
QPRAM (Virtual Farm Model)

What can it do?

• Provide an individual facility perspective of contamination events.
• Represent potential interactions among produce units and specific risk factors.
• Explicitly model change in the contamination status of units of fresh produce with respect to time during multiple stages.
• Facilitate trace-back studies
• Test intervention efficacy.
• Enable risk-based sampling via a tool designed for microbial contamination in the growing field.
Acknowledgement

<table>
<thead>
<tr>
<th>FDA:</th>
<th>RTI:</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Sherri Dennis,</td>
<td>– Amir Mokhtari,</td>
</tr>
<tr>
<td>– David Oryang,</td>
<td>– Stephen Beaulieu,</td>
</tr>
<tr>
<td>– Yuhuan Chen,</td>
<td>– Rainer Hilscher,</td>
</tr>
<tr>
<td>– Regis Pouillot</td>
<td>– Brandon Bergenroth,</td>
</tr>
<tr>
<td></td>
<td>– Jay Rineer,</td>
</tr>
<tr>
<td></td>
<td>– Aaron Parks</td>
</tr>
<tr>
<td></td>
<td>– Maren Anderson</td>
</tr>
<tr>
<td></td>
<td>– Lee-Ann Jaykus</td>
</tr>
</tbody>
</table>
Next steps in QPRAM model development

• Developing the post-harvest processing modules for selected produce commodities
• Updating the model database (more data from field trial studies)
• Updating algorithms for growth and survival of pathogens
• Enhancing the microbiological sampling tool
• Peer Review
GIS-RISK

PRODUCE SAFETY MODELING TOOL
GIS-RISK (PGRAM)

Purpose: Forecast where and when enteric pathogen contamination is likely.

- Regional spatial and temporal perspective.
- Recognize spatial and temporal correlations between environmental factors and historical data on produce contamination.
- Predict/forecast future produce contamination.

Current activities:

- **NASA-GSFC** - model development
- **USDA-ARS** - collecting environmental survey data (pathogens in watersheds)
- **USDA-APHIS**: developing spatio-temporal maps of livestock, wildlife, and crop locations and populations.
- **Industry**: providing historical produce contamination data, for use to improve model predictiveness.

Informs us where and when to be wary of potential produce contamination
Early warning system for industry and government

About

Future Potential locations and dates of produce contamination

The Approach

PAST
Collect Historical data

Geographic Information System (GIS)

PRESENT
Acquire Real-time Satellite or rain/humidity/temp gauge data

Remote Sensing and collection Systems

FUTURE
Climate Forecast data

Future Climate Prediction

Forecasting/ Predictive Geospatial Risk Assessment Model of Produce contamination by enteric pathogens

Early warning system for industry and government

About

Future Potential locations and dates of produce contamination
Location Characteristics

- Crop, Adjacent land use
- Topography: Slope, Soil type, soil temp.
- Wind speed and direction
- Climate: rainfall, Temp., Hum., Solar irrad.

Location of positive samples

- Water, soil, produce, animals

Potential Pathogen Sources:

- Cattle, Poultry, Swine, Feedlots, grazing land
- Bird and Feral (wild) animal habitats
- Humans,

Water Sources:

- Surface water, Ground water, Shallow wells, irrigation canals

Practices:

- Growing, Soil Amendment, Irrigation, Harvest

Other: Satellite derived vegetation index data to examine the landscape dynamics through time in relation to climate/rainfall variability
<table>
<thead>
<tr>
<th>Environmental Factor</th>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil texture (clay, silt, sand)</td>
<td>Soil Survey Geographic Database (SSURGO), Natural Resources Conservation Service, USDA</td>
<td>Mean percent content of clay, silt, and sand, in a one km radius surrounding the sample site</td>
</tr>
<tr>
<td>Soil organic content</td>
<td>SSURGO</td>
<td>Mean organic content for one km radius surrounding sample site</td>
</tr>
<tr>
<td>Precipitation</td>
<td>National Center for Atmospheric Research (NCAR)</td>
<td>Hourly and daily gridded precipitation data, aggregated to monthly data. Metrics for monthly cumulative precipitation and monthly precipitation anomalies were also created.</td>
</tr>
<tr>
<td>Land surface temperature</td>
<td>MODIS sensor</td>
<td>Land surface temperature is the temperature measured on the surface level and can be regarded as the temperature of the surface skin. Monthly data</td>
</tr>
<tr>
<td>NDVI</td>
<td>MODIS sensor</td>
<td>NDVI is a measure of vegetation greenness and is often used as an indicator of vegetation stress due to lack of precipitation</td>
</tr>
<tr>
<td>Grazing land</td>
<td>Farmland Monitoring and Mapping Program, California Department of Conservation</td>
<td>Land use categories derived from field surveys. Grazing land is defined as land on which the current vegetation is suited for grazing livestock.</td>
</tr>
<tr>
<td>Proximity to cattle/poultry operation</td>
<td>California Department of Water Resources</td>
<td>Land use survey of agricultural lands conducted by DWR. Includes class for farmsteads, dairies, livestock feed lots, and poultry farms</td>
</tr>
<tr>
<td>Land cover</td>
<td>Multi-Resolution Landcover Consortium</td>
<td>Land cover classification of satellite imagery, produced by consortium of federal agencies including NASA</td>
</tr>
<tr>
<td>Imperviousness index</td>
<td>Multi-Resolution Landcover Consortium</td>
<td>Imperviousness measurement produced by consortium of federal agencies including NASA</td>
</tr>
<tr>
<td>Humidity</td>
<td>NASA remote sensing data</td>
<td></td>
</tr>
<tr>
<td>Elevation</td>
<td>NASA SRTM</td>
<td>Elevation value for the sample site location</td>
</tr>
<tr>
<td>Slope</td>
<td>NASA SRTM</td>
<td>Slope gradient for the sample site location</td>
</tr>
</tbody>
</table>
Data Layers used in CA example

- 2011 NASS Cropland Data Layer (NASS Cropland Layer updated annually)
- Crop mask contains all agricultural land instead of “fruits and vegetables” only
- Feedlot, dairy and poultry locations from CA Dept of Water Resources Land Use Survey:
 - http://www.water.ca.gov/landwateruse/lusrvymain.cfm
- Pathogen risk based on 32 day cumulative precipitation and NDVI anomalies updated every 8 days
- Analysis Domain included CA, NV, AZ
Predicted Pathogen Risk at location 1 in California
Predicted Pathogen Risk at location 2 in California
Composite Risk: Salinas Valley
Acknowledgement

<table>
<thead>
<tr>
<th>FDA:</th>
<th>USDA-ARS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Sherri Dennis,</td>
<td>– Robert Cooley</td>
</tr>
<tr>
<td>– David Oryang,</td>
<td>– Lisa Gorski</td>
</tr>
<tr>
<td>– Wendy Fanaselle</td>
<td>– Robert Mandrell</td>
</tr>
<tr>
<td>NASA:</td>
<td>USDA-APHIS:</td>
</tr>
<tr>
<td>– Assaph Anyamba</td>
<td>– Ryan Miller</td>
</tr>
<tr>
<td>– Jennifer Small</td>
<td>– Kathe Bjork</td>
</tr>
<tr>
<td>– Matthew Smith</td>
<td>– Chris Burdette (CSU)</td>
</tr>
</tbody>
</table>
What’s needed to advance quantitative risk assessment modeling?

• Articulation of key questions to answer
 – …so the right tools/models are developed, validated, deployed

• Collaboration and leveraging of resources – government, industry, academic, international
 – Encourage data sharing
 – Improved understanding and modeling of the complex food supply system.
 – Systematic/ targeted collection of relevant data
 • Example: Prevalence and enumeration data for specific hazards in specific commodities at specific points in food supply chain (farm, processor, transportation, retail)
The right risk assessment, with data, will:

- Inform risk managers of where and when to look, to:
 - set priorities / allocate resources
 - identify major risk-contributing steps in farm-to-fork continuum

- Enable risk managers to evaluate effectiveness of interventions:
 - potential or equivalent control measures
 - proposed standards and criteria
 - contribution of compliance to risk management

- Inform risk communicators in:
 - developing communication/outreach messages
 - determining subpopulations at increased risk
 - assessing uncertainty and variability
Data Needs for Risk Models

• QRA is data intensive!

• Obtain the most up-to-date, and peer reviewed data from:
 – Published literature (meta-analysis), Expert elicitation
 – In-house research & surveys (ORA), Gov’t surveys (NHANES)
 – Commissioned studies (IEH, ARS), Data calls via FRN
 – Industry, Academia, Informal; educational site visits
 – Field trials

• Consider variability and uncertainty
 – Varying crops and pathogens
 – Spatial and Temporal Variation
 • at various regions/locations in the USA, during varying seasons.
 • under varying environmental conditions (temperature, solar irradiation, moisture/humidity, pH, salinity, windiness, climate, composition and concentration of microbial flora, soil series, water turbidity)
RISK ASSESSMENT DATA NEEDS - 1

• Practices
 – **Farm** (water sources, irrigation method & frequency, soil amendment, culture, workers, equipment & tools, wildlife mgt., harvest practices, etc.)
 – **Processing** (steps, wash water, treatments, equipment)
 – **Transport** (amount, temp., duration etc.)
 – **Retail & Consumption** (storage, preparation, etc.)
 – Effectiveness of intervention methods

• Need for Spatial and temporal variation:
 – Data from various locations in the USA,
 – Data at varying times/seasons in each location
RISK ASSESSMENT DATA NEEDS - 2

• Pathogen Prevalence, subtype & enumeration data
 – Farm (produce, irrigation water, soil, manure and other components)
 – Processing, Transport, Retail & Consumption.

• Pathogen Survival data (duration & likelihood)
 – Farm, Processing, Transport, Retail & Consumption.

• Data with Spatial and temporal variation:
 – Data from various locations in the USA,
 – Data at varying times/seasons in each location
 • varying environmental conditions (temperature, solar irradiation, moisture/humidity, pH, salinity, windiness, climate, composition and concentration of microbial flora, soil series, water turbidity)
DATA NEEDS – Transfer Coefficients

• Transfer coefficients of enteric pathogen (EP). Examples:
 – From soil to produce
 • via irrigation water splash, direct contact, wildlife, farm worker, equipment, wind, flood, etc.
 – From animal feces to produce
 • via irrigation water splash, direct contact, wildlife, insects, birds, equipment.
 – From animal to produce
 • via direct contact by wildlife, flies, birds or human
 – From domestic/wild animal to surface water
 • via rain and flood water runoff/splash, direct contact, etc

• Consider variation by type of produce, pathogen, irrigation, soil, and animal, as well as location, season, and time.
DATA NEEDS – Pathogen disposition

For each hazard, and at each intervention/action process along the farm to fork continuum, we need to know:

- **What is happening?** (addition, growth, decrease, cross contamination, dilution/concentration)
- **What is the proportion of produce units that are contaminated?** (before and after)
- **What is the level of contamination of a contaminated unit?** (before and after)
- **What is the increase or decrease in contamination level per produce unit?**
- **What is the increase or decrease in the proportion of contaminated produce units during the process?**

Any sampling data and knowledge that can help FDA to derive this information will be most appreciated.
FDA Data Acquisition from Field Trials and Sampling

• **UC Davis, WCFS Field Trials:**
 – Overhead irrigation mediated E. coli 0157:H7 transfer from wildlife feces to Romaine lettuce.
 – E. coli 0157:H7 survival duration on leaf surface.

• **Virginia Tech Field Trials** – Salmonella in Tomatoes.

• **USDA-ARS Field trials** – EC, SE, LM in Tomatoes and Lettuce

• **USDA-ARS Watershed sampling** for EC, SE, LM, NV

• **Industry Collaboration** – A novel partnership, providing invaluable sampling data for model validation and calibration.

• **USDA-APHIS FLAPS Model**
GOAL: Simulate and quantify the transfer of E. coli O157:H7 bacteria from fecal deposits to adjacent heads of lettuce, via the splash of overhead sprinkler irrigation water.

Objectives: The field trial involves:

- Growth of Romaine lettuce using standard commercial practices (standard bed and furrow design, foliar irrigation, etc.) and
- Spiking of rabbit feces with an attenuated rifampicin resistant strain of *E. coli* O157:H7 (ATCC 700728), for use in two experiments as follows to:

1. **determine transfer coefficient**: measure the likelihood and amount of *E. coli* O157:H7 that transfers onto mature Romaine lettuce from wildlife scat lying on the soil surface due to foliar irrigation; and
2. **determine survival rates**: measure the daily survival likelihood and amount of *E. coli* O157:H7 in a fecal-water matrix after direct inoculation onto mature Romaine lettuce leaves (i.e.,)

Output: Key variables that influence the value of the *E. coli* O157:H7 transfer coefficient are: age of feces, distance of feces from lettuce, distance of sprinkler head from feces, wind direction and speed, etc)
GOAL: Simulate and quantify the transfer of *Salmonella* bacteria from contaminated amended soil, and contaminated water, to tomato plants.

Objectives:

1. Determine the likelihood & amount of *S. enterica* Newport (SeN) contamination and survival on/in tomatoes using two different cultural systems (plasticulture vs. bare ground) and staked vs non staked, with drip irrigation.

2. Determine the likelihood and amount of SeN transfer to tomato plants grown in raw poultry litter versus conventional fertilizers.

3. Determine the likelihood and amount of SeN contamination in/on tomato plants that were drip irrigated with pond water vs. well water.

Plots will be 30 ft. in length & arranged in a randomized complete block design with 4 reps. per treatment.

Output: Transfer coefficients for *S. enterica* Newport from soil to tomatoes, and from water to tomatoes. Results will be used to parameterize QPRAM.
GOAL: Simulate and quantify the transfer of *Salmonella* and *E. coli* bacteria from contaminated amended soil, to tomato and lettuce plants.

Objectives:
Researchers at ARS-Beltsville, will conduct field trials that involve:

1. Growth of fresh produce using standard commercial practices (standard bed and furrow design, foliar irrigation, etc.)

2. Determine the likelihood and amount of pathogen (*Salmonella* and *E. coli*) transfer to, and survival in/on fresh produce plants grown in raw manure amended soil versus conventionally amended soil, under varying conditions of culture and irrigation.

Output: Transfer coefficients for *Salmonella* and *E. coli* bacteria from contaminated amended soil to tomatoes and lettuce plants. Results will be used to parameterize QPRAM. A variation of VA Tech and UC Davis trials.
GOAL: Sample and determine the incidence and concentration of E. coli O157:H7, generic E. coli, Salmonella, Listeria monocytogenes, and Norovirus in the watersheds of California, and measure the spatial and temporal variation.

Objective:
- **Year 1:** Periodic Sampling for E. coli and Salmonella (twice a month)
- **Year 2:** Intensive sampling for E. coli O157:H7, generic E. coli, Salmonella, Listeria monocytogenes, and Norovirus, (every week, or twice a week)

QUESTION: How does pathogen presence and concentration in specific locations in the watershed, depend on season, rainfall, temperature, topography, and proximity to livestock and wildlife?

Output:
For each sample: Date, GPS loc, positive/negative, concentration/enumeration
For each location: GPS loc, period (week/month/year) #sampled, #positive.
Data will be used in PGRAM to better predict produce contamination.
Number of Samples Tested

<table>
<thead>
<tr>
<th>Year</th>
<th>Ecoli</th>
<th>STEC</th>
<th>Salmonella</th>
<th>Listeria</th>
<th>Norovirus</th>
<th>Campylobacter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>76</td>
<td>119</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>756</td>
<td>756</td>
<td>756</td>
<td>713</td>
<td>365</td>
<td>0</td>
</tr>
<tr>
<td>2013</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2014</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>0</td>
<td>600</td>
</tr>
<tr>
<td>2015</td>
<td>900</td>
<td>900</td>
<td>900</td>
<td>900</td>
<td>0</td>
<td>900</td>
</tr>
</tbody>
</table>
Adapted from:
Goals:

- Acquire Salmonella, E. coli, Listeria, and norovirus sampling data from Industry collaborators,
- Use the data to parameterize, validate, and calibrate FDA’s predictive geospatial risk assessment model (PGRAM),
- Test the model’s ability to predict enteric pathogen contamination of produce.

Novel: Innovative collaboration mechanism.

Output:

- Parameterize and calibrate PGRAM to better forecast/predict produce contamination.
- Use forecasts to target sampling and other interventions, to enhance food safety.
Goal: FDA acquire sampling data from Industry collaborators, and use the data to parameterize, validate, and calibrate FDA’s predictive geospatial risk assessment model (GIS-Risk), and to test the model’s ability to predict enteric pathogen contamination of produce.

2. Use 2006-2008 data to parameterize GIS-Risk, and predict 2009 contaminations
3. Use 2006-2008 data to parameterize GIS-Risk, and predict 2009 contaminations
4. Use 2006-2009 data to parameterize GIS-Risk, and predict 2010 contaminations
5. Use 2006-20010 data to parameterize GIS-Risk, and predict 2011 contaminations

Validate and test the predictive model via RCA’s with industry.
Goal:
Develop the Farm Location and Animal Population Simulator (FLAPS) model to provide fine-grained spatial data of the distribution of swine, poultry, and cattle farms in the USA.

Approach:
- The FLAPS model is designed to use Census of Agriculture data and a variety of spatial-, statistical-, and simulation-modeling techniques to forecast the distribution and populations of poultry, cattle, swine, and feral swine, at a 100 m resolution for the conterminous U.S.
- FDA is able to access output data from the FLAPS model (i.e., the spatially-explicit simulation of farm locations and populations) through a web-based user interface.

Output:
- Forecast of the distribution and populations of poultry, cattle, and swine farms, and feral swine, at a 100 m resolution for the conterminous U.S.
FLAPS Overview

- Utilizes 2007 NASS data
- Generalized design (applicable to other NASS commodities?)
- User interface
- Locations estimated probabilistically (rather than rule-based)
- Locations estimated from samples of actual farm locations (10,000 sample locations/species)
- Fine spatial resolution (100m)
Swine farm, presence/absence sample (n = 10,000)
Probability surface (model output)

Environmental data (model covariates)

e.g., distance to road, distance to open areas, distance to cropland, etc.
Swine probability surface
Validation: $R^2 = 0.82$
Simulation Output

<table>
<thead>
<tr>
<th>state</th>
<th>latitude</th>
<th>longitude</th>
<th>population</th>
<th>commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>NV</td>
<td>39.520819</td>
<td>-118.764466</td>
<td>260</td>
<td>dairy</td>
</tr>
<tr>
<td>NV</td>
<td>39.505687</td>
<td>-118.644494</td>
<td>1567</td>
<td>dairy</td>
</tr>
<tr>
<td>NV</td>
<td>39.502445</td>
<td>-118.794729</td>
<td>1037</td>
<td>dairy</td>
</tr>
<tr>
<td>WY</td>
<td>41.31499</td>
<td>-106.624</td>
<td>1599</td>
<td>beef</td>
</tr>
<tr>
<td>WY</td>
<td>41.31391</td>
<td>-106.744</td>
<td>1872</td>
<td>beef</td>
</tr>
<tr>
<td>WY</td>
<td>41.31283</td>
<td>-106.753</td>
<td>346</td>
<td>beef</td>
</tr>
<tr>
<td>NE</td>
<td>40.62651</td>
<td>-98.2828</td>
<td>869</td>
<td>swine</td>
</tr>
<tr>
<td>NE</td>
<td>40.59732</td>
<td>-98.673</td>
<td>304</td>
<td>swine</td>
</tr>
<tr>
<td>NE</td>
<td>40.55517</td>
<td>-98.3055</td>
<td>1122</td>
<td>swine</td>
</tr>
<tr>
<td>AR</td>
<td>36.16918</td>
<td>-93.1132</td>
<td>9454</td>
<td>layers</td>
</tr>
<tr>
<td>AR</td>
<td>36.16053</td>
<td>-93.0343</td>
<td>25</td>
<td>layers</td>
</tr>
<tr>
<td>AR</td>
<td>36.15296</td>
<td>-93.0689</td>
<td>13450</td>
<td>layers</td>
</tr>
<tr>
<td>VA</td>
<td>37.48454</td>
<td>-78.2994</td>
<td>141</td>
<td>broilerssold</td>
</tr>
<tr>
<td>VA</td>
<td>37.46833</td>
<td>-78.2108</td>
<td>798309</td>
<td>broilerssold</td>
</tr>
<tr>
<td>VA</td>
<td>37.45536</td>
<td>-78.2281</td>
<td>1282130</td>
<td>broilerssold</td>
</tr>
</tbody>
</table>
CONCLUSION
FDA Models with Applicability to Produce

- **FDA-iRISK®**: An interactive, Web-based, risk assessment modeling tool (freely available at http://foodrisk.org/exclusives/). It quantitatively compares and ranks risks posed by multiple food/hazard combinations taking into account consumption, dose-response relationship, as well as contamination in the food supply system, from production to consumption. It can provide an industry-wide or farm-level perspective of the risk.

- **GIS-Risk**: A collaboration between FDA and NASA, to link geographic information systems with predictive risk-assessment models. The ultimate goal is to forecast when, where, and under what conditions microbial contamination of crops is likely to occur, leading to human illness. It provides a regional perspective of risk.

- **QPRAM**: The Quantitative Produce Risk Assessment Model (QPRAM) is an agent–based, virtual laboratory that models specific practices and risk factors. QPRAM tracks each unit of produce; keeping a history of how, when, where, and by how much it was contaminated. It provides a facility (individual farm or processing facility) level perspective of risk.
Conclusion

• **A risk model** allows virtual exploration of the events that lead to contamination, or an outbreak, and the ability to measure changes in contaminations or illnesses if different actions or measures are taken.

• **Using Risk models**, FDA is developing better scientific & risk based approaches to:
 – Identify “riskiest” stages of the farm-to-fork continuum for hazard-commodity pairs
 – Identify opportunities within each stage to reduce the risk of contamination
 – Compare/evaluate the effectiveness of various interventions and control measures
 – Perform “what if” scenarios to inform trace-back investigations
 – Predict where and when environmental contamination is a threat to food safety.

• The models integrate a multitude of data and information to predict effectiveness of prevention and control practices.
Some Lingering Questions

• How does produce become contaminated (i.e., routes of contamination) during on-farm growth, harvesting, and postharvest operation? Are there spatial and temporal factors that impact the likelihood of contamination?

• Are the produce types spatially distributed?

• Is pathogen presence in the farm environment spatially distributed?

• Does the likelihood of contamination vary spatially and seasonally among produce commodity types, and by pathogen? What does it depend on?

• What on-farm interventions reduce the likelihood of contamination of produce?
 • What is the spatial variation in application of the interventions/GAPS?
 • What is the spatial variation in compliance to the interventions/GAPS?

• What on-farm interventions reduce the likelihood of harvesting contaminated product?
 • What is the spatial variation in application of the interventions/GAPS?
 • What is the spatial variation in compliance to the interventions/GAPS?
For more information please visit our Foods website at:
http://www.fda.gov/Food/ScienceResearch/ResearchAreas/RiskAssessmentSafetyAssessment/default.htm

Thank You!