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3. Quantifying Greenhouse Gas Sources and Sinks in
Cropland and Grazing Land Systems

This chapter provides methodologies and guidance for reporting greenhouse gas (GHG) emissions 
and sinks at the entity scale for cropland and grazing land systems: 

• Section 3.1 provides an overview of cropland and grazing land systems management
practices and their resulting GHG emissions, system boundaries and temporal scale, a
summary of the selected methods, data requirements and sources, and estimating GHG
emissions.

• Section 3.2 provides the estimation methods. A single method is provided for each of the
GHG emission sources (and sinks), based on the best available method for application in an
operational system for entity-scale reporting. A single method was chosen to ensure
consistency in emission estimation by all reporting entities.

Two appendixes accompany this chapter, summarized below: 

• Appendix 3A provides the rationale and technical documentation for the methods as well as
a discussion on GHG intensity calculations.

• Appendix 3B summarizes research gaps for estimating GHG emissions in cropland and
grazing lands that could provide a basis for future development of the methods in this
chapter.

Additional background information on the impact of cropland and grazing land management are 
available in the 2014 report.  

3.1 Overview 
Cropland and grazing land systems are managed in a variety of ways, which results in varying 
degrees of GHG emissions or sinks. Table 3-1 describes the sources of emissions or sinks and the 
section in which methodologies are provided, along with the corresponding GHGs. 

This section provides guidance on reporting GHG emissions associated with entity-level fluxes from 
farm and ranch operations. The guidance focuses on methods for estimating the influence of land 
use and management practices on GHG emissions (and sinks) in crop and grazing land systems.  

Table 3-1. Overview of Cropland and Grazing Land Systems Sources and Associated GHGs 

Section Source 
Method for GHG 

Estimation Description 
CO2 N2O CH4 

3.2.1; 
3.2.2 

Biomass and litter 
carbon stock 
changes 

 

Estimating herbaceous biomass carbon stock during 
changes in land use is necessary to account for the 
influence of herbaceous plants on carbon dioxide (CO2) 
uptake from the atmosphere, storage in the terrestrial 
biosphere, and associated CO2 uptake or loss with land use 
conversion. Agroforestry and perennial tree and other 
woody crop systems also have longer term gains or losses 
of carbon based on the management of trees in these 
systems. 
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Section Source 
Method for GHG 

Estimation Description 
CO2 N2O CH4 

3.2.3 

Soil organic 
carbon (SOC) 
stock changes for 
mineral soils 

 

SOC stocks are influenced by land use and management in 
cropland and grazing land systems, as well as conversion 
from other land uses into these systems (Ogle et al., 
2019a). SOC pools can be modified due to changes in 
carbon inputs and outputs (Paustian et al., 2016). 

3.2.3 SOC stock changes 
for organic soils  

Emissions occur in organic soils following drainage due to 
the conversion of an anaerobic environment with a high 
water table to aerobic conditions (Ogle et al., 2019a), 
resulting in a significant loss of carbon to the atmosphere 
(Ogle et al., 2003). 

3.2.4 

Direct and indirect 
nitrous oxide 
(N2O) emissions 
from mineral soils 

 

N2O is emitted from cropland both directly and indirectly 
(Hergoualc’h et al., 2019). Direct emissions are fluxes from 
cropland or grazing lands where there are nitrogen 
additions or nitrogen mineralized from soil organic 
matter. Indirect emissions occur when reactive nitrogen is 
volatilized as ammonia (NH3) or nitrogen oxides (NOx), or 
transported via surface runoff or leaching in soluble forms 
from cropland or grazing lands, leading to N2O emissions 
in another location. 

3.2.4 

Direct N2O 
emissions from 
drainage of 
organic soils 

 

Organic soils (i.e., Histosols) are a special case in which 
drainage leads to high rates of nitrogen mineralization and 
increased N2O emissions. The method assumes that 
organic soils have a significant organic horizon in the soil, 
and so are significant inputs of nitrogen from the 
oxidation of organic matter. 

3.2.5 
Methane (CH4) 
flux for 
nonflooded soils 

 

This method addresses the influence of cropland and 
grazing land management on CH4 flux for nonflooded soils. 
Agronomic activity universally reduces CH4 uptake in 
cropland soils (Mosier et al., 1991; Robertson et al., 2000; 
Smith et al., 2000) and may also limit CH4 uptake in 
grazing land soils (McDaniel et al., 2019).  

3.2.6 
CH4 emissions 
from rice 
cultivation 

 

Several management practices affect CH4 emissions from 
rice systems. The method addresses key practices 
including the influence of water management, residue 
management, and organic amendments on CH4 emissions 
from rice (Yan et al., 2005; Linquist et al., 2018). 

3.2.7 CO2 from liming  

The addition of lime to soils is typically thought to 
generate CO2 emissions to the atmosphere (de Klein et al., 
2006). However, prevailing conditions in U.S. agricultural 
lands lead to lower CO2 emissions than expected because 
the majority of lime is dissolved in the presence of 
carbonic acid (H2CO3) (West and McBride, 2005).  

3.2.8 
Non-CO2 
emissions from 
biomass burning 

  

Biomass burning leads to emissions of CO2 as well as other 
GHGs or precursors to GHGs that are formed later through 
additional chemical reactions. Note: CO2 emissions are 
addressed in the biomass C stock change estimation to 
ensure that there is no double counting.  
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Section 
Method for GHG 

Estimation Source Description 
CO2 N2O CH4 

3.2.9 
CO2 from urea 
fertilizer 
application 

 

Urea fertilizer application to soils contributes CO2 
emissions to the atmosphere (de Klein et al., 2006). CO2 is 
incorporated into the urea during the manufacturing 
process: in the United States, the source of the CO2 is the 
fossil fuel used for NH3 production. The CO2 captured 
during NH3 production is released following application to 
soils, and as such is included in the farm-scale entity 
reporting.  

3.1.1 Description of Sector 
Croplands include all systems used to produce food, feed, and fiber, in addition to feedstocks for 
bioenergy production. Croplands are used to produce crops—both cultivated and noncultivated—
for harvest (U.S. EPA, 2020). Cultivated crops are typically categorized as row or close-grown crops, 
such as corn, soybeans, wheat, and vegetables. Noncultivated crops (or those occasionally 
cultivated to replenish the crop) include hay, perennial crops (e.g., orchards and vineyards), and 
horticultural crops. The majority of cropland in the United States is in upland systems outside 
wetlands (as defined in section 6.1.1), and these systems may or may not be irrigated. Rice can be 
grown on natural or constructed wetlands; this chapter refers to both systems as flooded rice. 
Wetlands can also be drained for crop production—in which case they are considered croplands 
because their principal use is crop production. Croplands also include agroforestry systems that are 
a mixture of crops and trees, such as alley cropping, shelterbelts, and riparian buffers. Some 
croplands may be set aside from production and considered reserve cropland. 

Grazing lands are systems that are used for livestock production and include rangelands and 
pasturelands. Rangeland is a land cover or use composed of grasses, grass-like plants, forbs, shrubs, 
and trees that is typically unsuited to cultivation because of physical limitations such as low and 
erratic precipitation, rough topography, poor drainage, or cold temperatures. Rangeland can 
include the following: (i) natural lands that have not been cultivated and consist of a historic 
complement of adapted plant species; and (ii) natural (go-back lands, old-field) or converted 
revegetated lands that are managed like native vegetation. Pastureland is a land use in which 
introduced or domesticated (tame) and/or native forage species mixtures are established through 
seeding, sprigging, and other practices that can be grazed and/or occasionally hayed or deferred for 
environmental purposes. Various degrees of management inputs may be applied, such as 
fertilization, liming, overseeding with grasses and legumes, mowing, remedial tillage, and irrigation 
(USDA, 2022). Note that for purposes of applying methods in this guidance, land that meets the 
definition of forest land is considered forest land regardless of other management such as grazing, 
and areas primarily used for crop or hay production are considered croplands.  

3.1.2 Resulting GHG Emissions 
Cropland and grazing lands can be sources of CO2, N2O, and CH4 emissions and have the potential to 
sequester carbon with changes in management (Smith et al., 2008; Paustian et al., 2016). Moreover, 
N2O emissions from the management of agricultural soils are a key source of GHG emissions in the 
United States (U.S. EPA, 2020). N2O emissions result from the processes of nitrification and 
denitrification, which are influenced by land use and management activity, especially synthetic 
fertilizer management. Land use and management can also influence carbon stocks in biomass, 
dead biomass, and soil pools. Carbon stocks can be enhanced or reduced depending on land use and 
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management practices (CAST, 2004; Paustian et al., 2016; Smith et al., 2008). For example, burning 
biomass can initially reduce biomass carbon stocks, but can also provide stimulus to enhance plant 
production and ecosystem carbon storage, particularly in grazing land systems. In addition, 
combustion of biomass will lead to non-CO2 GHG emissions—CH4, N2O, and emissions of other 
aerosol gases (carbon monoxide [CO], NOx)—that can be later converted to GHGs in the atmosphere 
or once deposited onto soil. 

While the greatest source of methane is enteric fermentation and waste management in livestock 
production, soils in crop and grazing land systems can also be a source or sink for CH4 depending on 
the conditions and management of soil. Methane can be removed from the atmosphere through the 
process of methanotrophy in soils. Methanotrophy occurs under aerobic conditions and is common 
in most soils that do not have standing water. In contrast, CH4 is produced in soils through the 
process of methanogenesis, which occurs under anaerobic conditions, particularly soils with 
standing water such as flooded rice production. Both processes are driven by the activity of 
microorganisms in soils, and their rate of activity is influenced by land use and management. 

3.1.3 Management Interactions 
The influence of crop and grazing land management on GHG emissions is not typically the simple 
sum of each practice’s effect. The influence of one practice can depend on another practice. For 
example, the influence of tillage on soil carbon will depend on residue management. The influence 
of nitrogen fertilization rates on N2O emissions can depend on the type of fertilizer. Because of 
these synergies, estimating GHG emissions from crop and grazing land systems will depend on a 
complete description of the practices used in the operation, including past management to capture 
legacy effects on GHG emissions. 

3.1.4 Mitigation 
Crop and grazing land management influence GHG emissions. These can be reduced through 
practices that reduce N2O emissions that would have otherwise occurred, reduce CH4 emissions, or 
enhance biomass or soil carbon stocks (CAST, 2004, 2011; Paustian et al., 2016; Smith et al., 2008; 
Robertson et al. 2022). Operators of cropland systems use a variety of practices that have 
implications for emissions, such as nutrient additions, irrigation, liming applications, organic 
amendments such as manure and biochar, tillage practices, residue management, fallowing fields, 
forage, and crop selection (including harvested and cover crops), setting aside lands from 
production, erosion control practices, water table management in wetlands, and drainage of 
wetlands. Operators of grazing systems also have a variety of management options that influence 
GHG emissions, such as stocking rate, forage selection, use of prescribed fires, nutrient applications, 
wetland drainage, irrigation, liming applications, and silvopastoral practices.  

The influence of these practices partly depends on past management, as well as the direct influence 
of these management activities on processes driving GHG emissions, biomass, and soil carbon stock 
changes. Some practices will almost always reduce GHG emissions, such as reducing mineral 
nitrogen fertilization rates (Bouwman et al., 2002a, 2002b; Hergoualc’h et al., 2019), although 
reduced mineral fertilization may be offset with additional input of organic manures that limits the 
reduction in emissions. In addition, other practices can have contrasting influences on individual 
GHGs. For example, no-till can increase soil carbon depending on the climate and soil type (Ogle et 
al., 2019c), but may also increase N2O emissions (van Kessel et al., 2012). Similarly, a midseason 
drain event with flooded rice production can decrease CH4 emissions, but also leads to more N2O 
emissions (Linquist et al., 2018).  
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Recognizing the complexities associated with management, the net impact of management changes 
on emissions can be estimated and the amount of mitigation quantified using the methods in 
section 3.2. 

3.1.5 System Boundaries and Temporal Scale 
System boundaries are defined by the coverage, extent, and resolution of the estimation methods. 
The coverage of methods in this chapter can be used to estimate GHG emission sources from farm 
and ranch operations, including emissions associated with biomass carbon, litter carbon, and soil 
carbon stock changes; CH4 and N2O fluxes from soils; emissions from burning of biomass; and CO2 
fluxes associated with urea fertilization and addition of carbonate limes.  

GHG emissions also occur with the production of management inputs, such as synthetic fertilizers 
and pesticides, and the processing of food, feed, fiber, and bioenergy feedstock products following 
harvest, but methods are not provided to estimate these emissions. Emissions from energy use, 
including those occurring on the entity’s operation, are also not addressed. 

The methods provided for crop and grazing land systems have a resolution of an individual parcel 
of land or field and include the spatial extent of all land parcels in an entity’s operation. Land 
parcels are areas with uniform management that are used to produce a single crop or rotation of 
crops, or to raise livestock (i.e., pasture, rangeland). Emissions are estimated for each individual 
parcel that is used for cropland and grazing land on the operation, and then the emissions are 
added together to estimate the total emissions from the crop and grazing land systems in the 
entity’s operation. The totals are then combined with emissions from forests and livestock to 
determine the overall emissions from the operation based on the methods provided in other 
chapters in this guidance. Emissions are estimated on an annual basis for as many years as needed 
for GHG emissions reporting. See chapter 2 as needed for additional details on accounting 
boundaries. 

3.1.6 Summary of Selected Methods 
This chapter describes methods for estimating biomass and soil carbon stock changes, soil N2O 
emissions, CH4 flux for nonflooded soils, CH4 emissions from flooded rice, CO2 emissions from 
liming, biomass burning non-CO2 GHG emissions, and CO2 emissions from urea fertilizer application 
(see table 3-2). The methods are classified according to the system of methodological tiers 
developed by the Intergovernmental Panel on Climate Change, or IPCC (2019), which is based on 
the complexity of different approaches for estimating GHG emissions. See chapter 1 for more 
information. 

The methods provided in this chapter range from the simple Tier 1 approaches to the most complex 
Tier 3 approaches. Higher tier methods, particularly Tier 3 methods, are expected to reduce 
uncertainties in the emission estimates if sufficient activity data are available and the methods are 
well developed and calibrated as demonstrated with adequate testing (Ogle et al., 2019a). 
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Table 3-2. Overview of Sources and Selected GHG Estimation Methods for Cropland and 
Grazing Land Systems 

Section Source Method 

3.2.1 Biomass carbon 
stock changes 

Herbaceous biomass is estimated with an IPCC Tier 2 method using entity-
specific data as input into the IPCC equations (Ogle et al., 2019b; McConkey et 
al., 2019). Woody plant growth and losses in agroforestry or perennial tree 
crops are estimated with an IPCC Tier 3 method, using a measurement-based 
approach with entity input. Other woody perennial crops are estimated with 
the IPCC Tier 1 method (Ogle et al., 2019b). 

3.2.3 SOC stocks for 
mineral soils 

An IPCC Tier 3 method is used to estimate the SOC stock changes to a 30 cm 
depth for most crops and mineral soils using the DayCent process-based 
model (See U.S. EPA, 2020 for information about the Tier 3 model). SOC stock 
changes for other crops and mineral soil types are estimated with an IPCC 
Tier 2 method to a 30 cm depth (Ogle et al., 2003). Biochar soil amendments 
impacts on SOC are estimated with a Tier 2 method (Ogle et al., 2019a; Woolf 
et al., 2021). 

3.2.3 SOC stocks for 
organic soils 

Carbon dioxide emissions from the drainage of organic soils (i.e., Histosols) 
are estimated with an IPCC Tier 2 method for the entire soil profile (Ogle et 
al., 2003). 

3.2.4 

Direct N2O 
emissions from 
mineral soils 

The direct N2O emissions are estimated with an IPCC Tier 3 method using the 
DayCent process-based model for most crops and grazing lands (U.S. EPA, 
2020). Other crops are estimated with an adapted IPCC Tier 1 method 
(Hergoualc’h et al., 2019) that includes some scaling of emissions for select 
practices, including nitrification inhibitors, biochar or slow-release fertilizers, 
and no-till adoption. 

Direct N2O 
emissions from 
drainage of 
organic soils 

Direct N2O emissions from the drainage of organic soils, i.e., Histosols, are 
estimated with the IPCC Tier 1 method (Drösler et al., 2013). 

Indirect N2O 
emissions 

Indirect soil N2O emissions are estimated with the IPCC Tier 1 method 
(Hergoualc’h et al., 2019). 

3.2.5 CH4 flux for 
nonflooded soils 

The CH4 flux for nonflooded mineral soil is estimated based on the average 
values for CH4 uptake in natural vegetation—whether grassland or forest—
attenuated by current cropland and grazing land practices. This approach is 
an IPCC Tier 3 method. The CH4 flux for drained organic soils, i.e., Histosols, is 
estimated with a Tier 1 method (Drösler et al., 2013) 

3.2.6 
CH4 emissions 
from flooded rice 
cultivation 

CH4 emissions from the largest rice-producing regions in the United States, 
the Mid-South and California, are estimated with an IPCC Tier 2 method using 
emission factors that are specific to these regions (Linquist et al., 2018). The 
remainder of rice production areas are estimated with the IPCC Tier 1 
method (Ogle et al., 2019b). 

3.2.7 CO2 from liming 
An IPCC Tier 2 method is used to estimate CO2 emissions from the application 
of carbonate limes (de Klein et al., 2006) with emission factors specific to 
conditions in the United States (adapted from West and McBride, 2005). 

3.2.8 
Non-CO2 
emissions from 
biomass burning 

Non-CO2 GHG emissions from biomass burning of grazing land vegetation or 
crop residues are estimated with the IPCC Tier 1 method (Aalde et al., 2006). 

3.2.9 
CO2 from urea 
fertilizer 
application 

CO2 emissions from the application of urea or urea-based fertilizers to soils 
are estimated with the IPCC Tier 1 method (de Klein et al., 2006). 
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Tier 1 methods are used for estimating biomass carbon stock changes for herbaceous and nontree 
woody plants (i.e., shrubs and vines), CO2 emissions from urea fertilization, CH4 emissions from 
some regions with flooded rice and drained organic soils, direct soil N2O emissions for some crops 
and soils, indirect soil N2O emissions, direct soil N2O emissions from drained organic soils, and 
biomass burning non-CO2 GHG emissions. These methods are the most generalized globally and 
cannot capture specific conditions at local sites, and consequently have more uncertainty for 
estimating emissions from an entity’s operation.  

Direct soil N2O emissions for most crops and mineral soils, CH4 emissions from rice production in 
the Mid-South and California, CO2 emissions from liming, SOC stock changes for some crops and 
mineral soil types, and soil carbon stock changes for drained organic soils all have elements of Tier 
2 methods but may rely partly on emission factors provided by IPCC. These methods incorporate 
information about conditions specific to U.S. agricultural systems and the influence on emission 
rates, but again lack specificity for local site conditions in many cases.  

Soil carbon stock changes and direct soil N2O emissions for most crops and mineral soils are 
estimated using a Tier 3 method with a process-based simulation model (i.e., DayCent). Methane 
flux for nonflooded mineral soils is also estimated with a Tier 3 method, due to the absence of IPCC 
guidance for estimating land use and management effects on CH4 flux associated with nonflooded 
mineral soils. A Tier 3 method with a measurement-based approach is used to estimate woody 
biomass carbon stock changes for agroforestry and woody perennial tree crops.  

The Tier 3 methods, particularly the process-based model and measurement-based approaches, 
have the greatest potential for accurate estimation of the influence of local conditions on GHG 
emissions. The models underlying these methods have a general set of parameters that have been 
calibrated across a national dataset. The DayCent model approach also incorporates drivers 
associated with local conditions, including specific management practices, soil characteristics, and 
weather patterns, providing estimates of GHG emissions that are more specific to an entity’s 
operation. The measurement-based approach for agroforestry and woody perennial tree crops 
incorporates local measurements from the entity’s land parcels to develop stock changes more 
specific to the operation. Future research and refinements of the cropland and grazing land 
methods will likely incorporate more Tier 3 methods, and thus provide a more accurate estimation 
of GHG emissions based on local conditions for entity reporting. 

All methods include a range of data sources from varying levels of specificity on operation-specific 
data to national datasets. An entity will need to collect operation-specific data: general activity data 
related to farm and livestock management practices (e.g., tillage practices, grazing practices, 
fertilizer use). National datasets are recommended for ancillary data requirements in the methods, 
such as climate data and soil characteristics.  

3.2 Estimation Methods 
This section provides methods for estimating GHG emissions from cropland and grazing land 
systems—specifically, for estimating emissions for a given year on a parcel of land. A parcel is a 
field in an operation with uniform management. (If management varies across the field, then the 
field should be subdivided into separate parcels for estimating emissions.) The methods are applied 
for both croplands that remain croplands and grazing lands that remain grazing lands (as 
categorized by IPCC), as well as land that has been converted to croplands or grazing lands. 

Trends across years or comparisons to baselines can be made using annual emission estimates. 
This chapter does not give guidance on how to develop baselines or project trends for emission 
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estimation. Emissions from carbon stocks are based on estimating the change in stock from the 
beginning to the end of the year, emissions of N2O and CH4 are based on estimating total annual 
emissions. Methods are also provided for estimating total emissions of GHG precursor gases during 
biomass burning, as well as nitrogen compounds that are volatilized or subject to leaching and 
runoff from cropland or grazing land and that are later converted into GHGs. 

GHG emission methods range in complexity for the different source categories according to the 
state of the science and prior method development. Simple methods were chosen for several of the 
emission or carbon stock change source categories, given the current state of methods development 
for these categories. Although simplicity may be preferred for transparency in estimation, some of 
the methods use more complex approaches, such as process-based simulation models, because they 
greatly improve accuracy and incorporate more information about local conditions that influence 
emissions. 

3.2.1 Biomass Carbon Stock Changes 

Box 3-1. Method for Estimating Biomass Carbon Stock Changes1 

Herbaceous 
 The method consists of estimating the annual biomass stock for cropland or grazing land

following a land-use change to cropland and grazing land. This method only addresses a
change in the herbaceous biomass carbon stocks in the year following a land-use change,
consistent with the IPCC methods (McConkey et al., 2019; Ogle et al., 2019b).

Woody 
 The method consists of estimating biomass stock from trees in croplands and grazing lands

using allometric equations and entity-measured data (Chojnacky et al., 2014) for all years.
The data collection method depends on whether the woody plants are regularly or randomly
spaced.

 For parcels with shrubs, use the IPCC default for hedgerows to estimate biomass carbon
stock from shrubs (Ogle et al., 2019b). For vineyards, use the IPCC default for vine crops to
estimate biomass carbon stock.

3.2.1.1 Description of Method 
A modified version of the methodology developed by IPCC (McConkey et al., 2019; Ogle et al., 
2019b) has been adopted for entity-scale reporting in the United States for herbaceous and woody 
biomass stock changes associated with land-use change (see appendix 3A.1 for the rationale). This 
method can be used for annual crops, set-aside cropland, grazing lands, orchards, vineyards, and 
agroforestry systems (e.g., windbreaks, alley cropping, silvopasture, riparian forest buffers). Forest 
farming (also referred to as multistory cropping) is addressed with the methods and approaches 
presented in chapter 5.  

To determine the change in biomass carbon stocks, subtract the total biomass carbon stock in the 
previous year from the total stock in the current year, which will include both herbaceous and 
woody biomass. The herbaceous stock changes are only estimated in a year with a land-use change 

1 Biomass C stock changes are only estimated for herbaceous biomass in the year following a land-use change 
but are estimated for woody biomass in all years regardless of if the land has recently been converted from 
another land use or not recently converted from another land use. 
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on the land parcel including Land Converted to Cropland and Land Converted to Grazing Land.2 In 
contrast, the change in woody biomass associated with shrub biomass or vineyards is estimated 
using a gain-loss method for all years. Use equation 3-1 to estimate the total biomass carbon stock 
change for a land parcel over a year. For woody biomass, the stocks may not be estimated in 
consecutive years3 so the stock change will need to be divided by the number of years between the 
estimates. 

Equation 3-1: Total Biomass Carbon Stock Change 

∆𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = (∆𝐶𝐶𝐻𝐻𝐻𝐻 + ∆𝐶𝐶𝑊𝑊𝐻𝐻) × CO2MW 

Where: 
ΔCbiomass = total annual change in biomass carbon stock (metric tons CO2-eq) 
ΔCHB = total annual change in herbaceous biomass carbon stock (metric tons C), set to 

0 if there is no land-use change 
ΔCWB = total annual change in woody biomass carbon stock (metric tons C) 
CO2MW = ratio of molecular weight of CO2 to carbon = 44/12 

∆𝐶𝐶𝐻𝐻𝐻𝐻 = 𝐻𝐻𝑡𝑡 − 𝐻𝐻𝑡𝑡−1 

Where: 
ΔCHB = total annual change in herbaceous biomass carbon stock (metric tons C), set to 

0 if there is no land-use change 
H = herbaceous biomass stock (metric tons C) 
t = current year stock following the land-use change 
t‐1 = previous year’s stock prior to the land-use change 

∆𝐶𝐶𝑊𝑊𝐻𝐻 = (𝑊𝑊𝑡𝑡 −𝑊𝑊𝑡𝑡−1) + 𝑂𝑂𝑊𝑊𝑂𝑂 

Where: 
ΔCWB = total annual change in woody biomass carbon stock (metric tons C) 
W = annual woody tree biomass stock (metric tons C) 
OWP = annual change in other woody plant biomass stock (shrubs and vines) 

(metric tons C) 
t = current year stock 
t‐1 = previous year’s stock 

The estimation method for herbaceous and woody biomass stocks in cropland and grazing land is 
given below. If the previous land use is forest land, estimate the carbon stocks using methods found 
in chapter 5. 

Herbaceous Biomass 

Use equation 3-2 to estimate the annual herbaceous biomass carbon stock in a land parcel for 
cropland or grazing land following a land-use change during the year.  

2 See chapter 7 for information about land-use change. 
3 Woody plants may be sampled every 5 years or another time interval that is not in consecutive years. 
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Equation 3-2: Mean Annual Herbaceous Biomass Carbon 

𝐻𝐻 = [𝐻𝐻𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝 + (𝐻𝐻𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝 × R)] × 𝐴𝐴 × 𝑌𝑌𝑓𝑓 

Where: 
H = annual herbaceous biomass carbon stock (metric tons C) 
Hpeak = annual peak aboveground biomass (metric tons C/ha) 
R = root-to-shoot ratio (unitless) 
A = area of land parcel (ha) 
Yf = approximate fraction of calendar year representing the growing season 

(unitless) 

The annual biomass stock is intended to represent the average amount of C in the biomass in the 
annual cycle and is calculated by the peak annual biomass (weighted by fraction of year in growing 
season) and zero biomass for the non-growing season when no crop exists and both litter and roots 
are decomposing relatively quickly (Gill et al., 2002).  

Use equation 3-3 to estimate the peak aboveground herbaceous biomass in a land parcel from 
harvest yield data in croplands or peak forage yields in grazing lands. 

Equation 3-3: Peak Aboveground Herbaceous Biomass Carbon 

𝐻𝐻𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝 = (𝑌𝑌 ÷ 𝐻𝐻𝐻𝐻) × 𝐷𝐷𝐷𝐷 × 𝐹𝐹𝐶𝐶  

Where: 
Hpeak = annual peak aboveground herbaceous biomass carbon stock 

(metric tons C/ha) 
Y = fresh weight of the annual crop harvest or forage yield (metric tons yield/ha) 
HI = harvest index (metric tons yield/metric tons biomass) 
DM = dry matter content of harvested crop biomass or forage 

(metric tons dry matter/metric tons biomass) 
FC = carbon fraction of aboveground biomass (metric tons C/metric tons dry 

matter) 

Equation 3-3 captures the influence of land-use change on biomass carbon stocks and is based on 
the crop or forage grown on the land parcel in the year of the land-use change, or the next year if no 
crop or forage is planted during the year of the conversion. For grazing lands, the HI is set to 1. See 
other land use chapters for methods to estimate herbaceous biomass C stock if the previous land 
use is not cropland or grazing land. 

The entity may not harvest a crop following a land-use change due to drought, pest outbreaks, or 
other crop failures. In those cases, the entity may use the average yield that they have harvested in 
the past for the crop on the land parcel. Alternatively, the entity may use average county yields from 
the USDA, National Agricultural Statistics Service4 (NASS) for the crop. 

4 https://quickstats.nass.usda.gov/ 

https://quickstats.nass.usda.gov/
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The dry matter content, harvest index, and root-to-shoot ratios are provided in table 3-3. The 
carbon fraction for herbaceous biomass is provided in table 3-4. 

Table 3-3. Dry Matter Content of Harvested Crop Biomass, Harvest Index, and Root-to-Shoot 
Ratios for Various Crops With 95-Percent Confidence Intervals in Parentheses

Crop 

Dry Matter Content 
(metric tons dry 

matter/metric tons 
biomass) 

Harvest Index 
(metric tons 

yield/metric tons 
biomass) 

Root-to-Shoot Ratio 

Food Crops 
Barley 0.865 (±0.033) 0.46 (±0.086) 0.11 (±0.100) 
Beans 0.84 (±0.028) 0.46 (±0.086) 0.08 (±0.072) 
Corn grain 0.86 (±0.016) 0.53 (±0.080) 0.18 (±0.175) 
Corn silage 0.74 (±0.014) 0.95 (±0.314) 0.18 (±0.175) 
Cotton 0.92 (±0.013) 0.40 (±0.080) 0.17 (±0.075) 
Millet 0.90 (±0.017) 0.46 (±0.081) 0.25 (±0.228) 
Oats 0.865 (±0.016) 0.52 (±0.097) 0.40 (±0.364) 
Peanuts 0.91 (±0.017) 0.40 (±0.066) 0.07 (±0.009) 
Potatoes 0.20 (±0.019) 0.50 (±0.100) 0.07 (±0.031) 
Rice 0.91 (±0.015) 0.42 (±0.118) 0.22 (±0.029) 
Rye 0.90 (±0.017) 0.50 (±0.094) 0.14 (±0.126) 
Sorghum grain 0.86 (±0.016) 0.44 (±0.065) 0.18 (±0.175) 
Sorghum silage 0.74 (±0.014) 0.95 (±0.314) 0.18(±0.175) 
Soybean 0.875 (±0.015) 0.42 (±0.070) 0.19 (±0.171) 
Sugarbeets 0.15 (±0.002) 0.40 (±0.096) 0.43 (±0.189) 
Sugarcane 0.258 (±0.003) 0.75 (±0.480) 0.18 (±0.067) 
Sunflower 0.91 (±0.017) 0.27 (±0.030) 0.06 (±0.026) 
Tobacco 0.80 (±0.015) 0.60 (±0.198) 0.80 (±0.352) 
Wheat 0.865 (±0.033) 0.39 (±0.069) 0.20 (±0.172) 
Forage and Fodder Crops 
Alfalfa hay 0.87 (±0.016) 0.95 (±0.031) 0.87 (±0.190) 
Nonlegume hay 0.87 (±0.016) 0.95 (±0.031) 0.87 (±0.190) 
Nitrogen-fixing forages 0.35 (±0.12) 0.95 (±0.031) 1.1 (±0.233) 
Nonnitrogen-fixing forages 0.35 (±0.012) 0.95 (±0.031) 1.5 (±0.318) 
Perennial grasses 0.35 (±0.012) 0.95 (±0.031) 1.5 (±0.318) 

Grass-clover mixtures 0.35 (±0.012) 0.95 (±0.031) 1.5 (±0.318) 

Source: Revised from West et al., 2010. 
Probability density functions have a normal distribution that can be used to propagate errors through the analysis and 
quantify uncertainty. The confidence intervals represent uncertainty for a national scale application of the method, and so 
there may be additional uncertainty with application of this method at the entity scale that is not quantified. 
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Table 3-4. Carbon Fraction for Herbaceous Biomass With 95-Percent Confidence Interval 

FC 95-Percent Confidence Interval 

Herbaceous biomass carbon fraction 0.45 0.42–0.47 

Source: Expert judgement of authors. 
Probability density functions have a normal distribution. The confidence intervals represent uncertainty for a national 
scale application of the method, and so there may be additional uncertainty with application of this method at the entity 
scale that is not quantified. 

Woody Tree Biomass 

The following section provides general guidance for obtaining estimates of woody biomass carbon 
stocks on croplands and grazing lands using a measurement-based approach. This guidance is 
intended to provide the basic information needed to characterize a range of vegetation conditions 
from single rows of trees or shrubs, to natural stands of trees dispersed randomly. This method can 
be used for orchards, vineyards, and agroforestry systems. 

The most precise way to characterize a population (e.g., all trees or shrubs on the entity’s land) is to 
measure each individual tree in the population. This approach—typically described as a census—is 
the preferred method for collecting data on trees within the land parcel if feasible. If a parcel’s size 
or the number of trees in it makes a census infeasible, sampling individuals from the population is 
acceptable for reporting biomass carbon stock changes. More information about sampling is 
provided in section 3.2.1.2. Trees are large woody perennial plants, capable of reaching at least 15 
feet (4.6 meters) in height, with a diameter at breast height (dbh) or at root collar (if multi-
stemmed woodland species) greater than 1 inch (2.5 centimeters). Woody plants that do not meet 
this definition may be considered shrubs. 

After collecting the activity data for trees, i.e., diameter at breast height (dbh) as described in 
section 3.2.1.2, estimate the total change in woody biomass for a land parcel using equation 3-4. 

Equation 3-4: Total Woody Tree Biomass Carbon Stock 

𝑊𝑊 = exp [𝑙𝑙𝑙𝑙(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎) + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎] × 𝐷𝐷 × 𝐹𝐹𝐶𝐶  

Where: 
W = annual woody tree biomass stock (metric tons C) 
biomassabvg  = aboveground woody biomass stock for trees 2.5 cm and larger in dbh 

(kg biomass dry matter) 
biomassblwg  = belowground woody biomass stock for trees 2.5 cm and larger in dbh 

(kg biomass dry matter) 
M = conversion factor for converting kg to metric tons (0.001) 
FC = carbon fraction of tree biomass (metric tons C/metric tons dry matter) 

The carbon fraction for woody tree biomass is provided in table 3-5. 



Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems 

3-18 

Table 3-5. Carbon Fraction for Woody Tree Biomass With 95-Percent Confidence Interval 

FC 95-Percent Confidence Interval 

Tree biomass carbon fraction 0.47 0.44–0.49 

Source: Aalde et al., 2006, i.e., IPCC Tier 1 factors. 
Probability density functions have a normal distribution that can be used to propagate errors through the analysis and 
quantify uncertainty. The confidence intervals represent uncertainty for a national scale application of the method, and so 
there may be additional uncertainty with application of this method at the entity scale that is not quantified. 

The total aboveground biomass in the sampling plots is estimated using equation 3-5, with 
measured dbh and species group for each tree stem within the plots. Equation parameters are 
chosen based on 35 species groups in the United States (Chojnacky et al., 2014; see table 3-6 
below). Refer to table 3A-1. in appendix 3A.1 to determine which of 129 tree species are associated 
with the 35 species groups. For deciduous tree species not found in the list (e.g., fruit and nut 
species in orchards or agroforestry systems), use equation parameters associated with the 
hardwood group (Cornaceae/Ericaceae/Lauraceae/Platanaceae/Rosaceae/Ulmaceae). 

Equation 3-5: Aboveground Woody Tree Biomass Stock 

ln (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎) =
∑ ∑ 𝛽𝛽0 + [𝛽𝛽1 × ln(𝑑𝑑𝑏𝑏ℎ)]𝑆𝑆𝑡𝑡𝑝𝑝𝑏𝑏𝑏𝑏𝑃𝑃𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏

𝑂𝑂𝑙𝑙𝑏𝑏𝑃𝑃𝑛𝑛
× 𝐸𝐸𝑓𝑓 × 𝐴𝐴𝑇𝑇  

Where: 
biomassabvg = total aboveground woody biomass stock for trees 2.5 cm and larger in dbh for 

all plots in the land parcel (kg biomass dry matter) 
β0 and β1 = model parameters for each stem (dimensionless: see table 3-6) 
dbh = diameter at breast height for each stem (cm) 
ln  = natural log base “e” (2.718282) 
Plotn = number of plots sampled 
Ef = number of plots in a hectare (dimensionless) 
AT = area of land parcel with woody tree cover (ha) 

The stems within a plot are summed to obtain a plot total; the plot totals are then summed to 
obtain the total aboveground woody biomass stock for all plots in the land parcel. 

Table 3-6. Aboveground Biomass Model Parameters for 13 Conifer, 18 Hardwood, and 4 
Woodland Taxa With 95-Percent Confidence Intervalsa 

Group Taxon β0 
95-Percent 
Confidence 

Interval 
β1 

95-Percent 
Confidence 

Interval 

Conifer Abies, 0.35 spgb –2.3123 ±0.4625 2.3482 ±0.4696 
Conifer Abies ≥ 0.35 spg –3.1774 ±0.6355 2.6426 ±0.5285 
Conifer Cupressaceae, 0.30 spg –1.9615 ±0.3923 2.1063 ±0.4213 
Conifer Cupressaceae, 0.30–0.39 spg –2.7765 ±0.5553 2.4195 ±0.4839 
Conifer Cupressaceae, ≥ 0.40 spg –2.6327 ±0.5265 2.4757 ±0.4951 
Conifer Larix –2.3012 ±0.4602 2.3853 ±0.4771 
Conifer Picea, 0.35 spg –3.0300 ±0.6060 2.5567 ±0.5113 
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Group Taxon β0 
95-Percent 
Confidence 

Interval 
β1 

95-Percent 
Confidence 

Interval 

Conifer Picea, ≥ 0.35 spg –2.1364 ±0.4273 2.3233 ±0.4647 
Conifer Pinus, 0.45 spg –2.6177 ±1.0471 2.4638 ±0.9855 
Conifer Pinus, ≥ 0.45 spg –3.0506 ±1.2202 2.6465 ±1.0586 
Conifer Pseudotsuga –2.4623 ±0.9849 2.4852 ±0.9941 
Conifer Tsuga, 0.40 spg –2.3480 ±0.9392 2.3876 ±0.9550 
Conifer Tsuga, ≥ 0.40 spg –2.9208 ±1.1683 2.5697 ±1.0279 
Hardwood Aceraceae, 0.50 spg  –2.0470 ±0.4094 2.3852 ±0.4770 
Hardwood Aceraceae, ≥ 0.50 spg  –1.8011 ±0.3602 2.3852 ±0.4770 
Hardwood Betulaceae, 0.40 spg  –2.5932 ±0.5186 2.5349 ±0.5070 
Hardwood Betulaceae, 0.40–0.49 spg –2.2271 ±0.4454 2.4513 ±0.4903 
Hardwood Betulaceae, 0.50–0.59 spg –1.8096 ±0.3619 2.3480 ±0.4696 
Hardwood Betulaceae, ≥ 0.60 spg  –2.2652 ±0.4530 2.5349 ±0.5070 

Hardwood Cornaceae/Ericaceae/Lauraceae/
Platanaceae/Rosaceae/Ulmaceae –2.2118 ±0.4424 2.4133 ±0.4827 

Hardwood Fabaceae/Juglandaceae, Carya –2.5095 ±0.5019 2.6175 ±0.5235 
Hardwood Fabaceae/Juglandaceae, other  –2.5095 ±0.5019 2.5437 ±0.5087 
Hardwood Fagaceae, deciduous –2.0705 ±0.4141 2.4410 ±0.4882 
Hardwood Fagaceae, evergreen  –2.2198 ±0.4440 2.4410 ±0.4882 
Hardwood Hamamelidaceae  –2.6390 ±0.5278 2.5466 ±0.5093 
Hardwood Hippocastanaceae/Tiliaceae –2.4108 ±0.4822 2.4177 ±0.4835 
Hardwood Magnoliaceae  –2.5497 ±0.5099 2.5011 ±0.5002 
Hardwood Oleaceae, 0.55 spg  –2.0314 ±0.4063 2.3524 ±0.4705 
Hardwood Oleaceae, ≥ 0.55 spg  –1.8384 ±0.3677 2.3524 ±0.4705 
Hardwood Salicaceae, 0.35 spg  –2.6863 ±0.5373 2.4561 ±0.4912 
Hardwood Salicaceae, ≥ 0.35 spg –2.4441 ±0.4888 2.4561 ±0.4912 
Woodlandc Cupressaceae  –2.7096 ±0.8129 2.1942 ±0.6583 
Woodlandc Fabaceae/Rosaceae –2.9255 ±2.0479 2.4109 ±1.6876 
Woodlandc Fagaceae  –3.0304 ±1.2122 2.4982 ±0.9993 
Woodlandc Pinaceae  –3.2007 ±0.3201 2.5339 ±0.2534 

Source: Chojnacky et al., 2014. 
Probability density functions have a normal distribution that can be used to propagate errors through the analysis and 
quantify uncertainty. The method is based on available studies that provided pseudo-data from those empirical 
assessments to develop biomass estimates. The model was fit to the biomass estimates. Consequently, there may be 
additional uncertainty in the application of this method at the entity scale that is not quantified. 
a Includes the relative uncertainty in estimates derived with equation 3-5, expressed conservatively on a percentage 

basis as half the 95-percent confidence interval based on pseudodata in Chojnacky et al. (2014). Estimates of woody 
tree biomass stocks by taxon that are calculated with equation 3-5 are assumed to have the uncertainty provided in 
this table, which can be used for error propagation. 

b Where spg is the specific gravity of wood on a green volume to dry-weight basis. 
c Woodland groups are based on diameter at root collar instead of dbh. 
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Use equation 3-6, in combination with equation parameters from table 3-7, to estimate the 
belowground biomass. Fine and coarse roots are treated separately in the calculation.  

Equation 3-6: Belowground Woody Tree Biomass Stock 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎 = [𝐶𝐶𝐶𝐶 × 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎] + [𝐹𝐹𝐶𝐶 × 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎] 

Where: 
biomassblwg = belowground woody biomass stock for trees 2.5 cm and larger in dbh (kg 

biomass dry matter) 
biomassabvg  = aboveground woody biomass stock for trees 2.5 cm and larger in dbh (kg 

biomass dry matter) 
CR = coarse root ratio 
FR = fine root ratio 

𝐶𝐶𝐶𝐶 = 𝛽𝛽0 + [𝛽𝛽1 × ln(𝑑𝑑𝑏𝑏ℎ)] 

𝐹𝐹𝐶𝐶 = 𝛽𝛽0 + [𝛽𝛽1 × ln(𝑑𝑑𝑏𝑏ℎ)] 

Where: 
CR = coarse root ratio 
FR = fine root ratio 
dbh = diameter at breast height (cm) 
ln  = natural log base “e” (2.718282) 
β0 and β1 = model parameters (dimensionless: see table 3-7) 

Table 3-7. Belowground Biomass Model Parameters for Coarse and Fine Roots With 95-
Percent Confidence Intervalsa 

Component β0 
95-Percent 
Confidence 

Interval 
β1 

95-Percent 
Confidence 

Interval 

Coarse roots –1.4485 ±1.0864 –0.03476 ±0.0261 
Fine roots –1.8629 ±1.3972 –0.77534 ±0.5815 

Source: Chojnacky et al., 2014. 
Probability density functions have a normal distribution that can be used to propagate error through the analysis and 
quantify uncertainty. The method is based on based on available studies that provided pseudo-data from those empirical 
assessments to develop biomass estimates.   
a Given the limited pseudo-data used to develop the root-to-shoot ratio, a nominal uncertainty of +75 percent is 

suggested and presented in the table based on Ogle et al. (2019b), which is expected to include the likely values at the 
entity scale. 



Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems 

3-21 

Box 3-2. Projections of Woody Tree Biomass 
For future estimation of carbon stocks, individual tree growth models such as those based on 
Lessard (2000) and Lessard et al. (2001) can be used in conjunction with the diameter-based 
allometric models (Chojnacky et al., 2014). Tree growth is dependent on many factors—and the 
longer the time estimate, the greater the uncertainty. Data from the U.S. Forest Service’s Forest 
Inventory and Analysis program can be used to support growth increment models. Activity data 
include status (live or dead), which should be used in modeling future growth potential and 
carbon stock change.  

Other Woody Biomass 

Use equation 3-7 to estimate the total shrub and vine biomass carbon stock change for the land 
parcel. If stocks are not estimated for consecutive years, the stock change will need to be divided by 
the number of years between the estimates. The carbon accumulation factor for shrub and vine 
biomass is provided in table 3-8. 

Equation 3-7: Other Woody Biomass Carbon Stock Change 

𝑂𝑂𝑊𝑊𝑂𝑂 = (𝑆𝑆𝑡𝑡 − 𝑆𝑆𝑡𝑡−1) + (𝑉𝑉𝑡𝑡 − 𝑉𝑉𝑡𝑡−1) 

Where: 
OWP = annual change in other woody plant biomass stock (shrubs and vines) 

(metric tons C) 
S = woody biomass stock for shrubs (metric tons C) 
V = woody biomass stock for vines (metric tons C) 
t = current year stocks 
t–1 = previous year’s stocks 

𝑆𝑆 =
∑ ∑ (𝑁𝑁𝑏𝑏 × 𝐶𝐶𝐴𝐴𝑏𝑏 × 𝑌𝑌𝑏𝑏)𝐴𝐴𝑎𝑎𝑝𝑝

 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝𝑏𝑏
𝑃𝑃𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏

𝑂𝑂𝑙𝑙𝑏𝑏𝑃𝑃𝑛𝑛
× 𝐸𝐸𝑓𝑓 × 𝐴𝐴𝑆𝑆 

Where: 
S = woody biomass stock for shrubs (metric tons C) 
NS = number of shrubs in sample plot (shrubs) 
CAS  = carbon accumulation factor per shrub (metric tons C/shrub/year) 
YS = age of shrubs up to 30 years of age (years); use 30 years if age is unknown, and 

assign an age of 30 to all shrubs older than that for estimating the stock 
Plotn = number of plots sampled 
Ef = number of plots that fit into a hectare (dimensionless) 
AS = area of parcel with woody shrub cover (ha) 

𝑉𝑉 = (𝐴𝐴𝑎𝑎 × 𝐶𝐶𝐴𝐴𝑎𝑎 × 𝑌𝑌𝑎𝑎) 

Where: 
V = woody biomass stock for vines (metric tons C) 
AV = area of vines in the entire land parcel being estimated (ha) 
CAV  = carbon accumulation factor for vineyards (metric tons C/ha/year) 
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YV = age of vines up to 20 years of age (years); use 20 years if age is unknown, and 
assign an age of 20 to all vines older than that for estimating the stock 

Age classes for shrubs within a plot are summed to obtain plot totals, and then the plot totals are 
summed to obtain the total woody biomass stock for shrubs for all plots in the land parcel. 

If there are shrubs in the land parcel, use IPCC Tier 1 hedgerow defaults for estimating carbon stock 
from shrubs (Ogle et al., 2019b). Specifically, use 0.00135 metric tons of carbon accumulation per 
shrub per year for up to 30 years to estimate total carbon stock for aboveground and belowground 
biomass. No additional increase in net growth is assumed after 30 years. If vineyards are part of the 
land parcel, use the IPCC Tier 1 default factor for vines (e.g., grapes) for estimating aboveground 
carbon stock for up to 20 years (Ogle et al., 2019b). No additional increase in net growth is assumed 
after 20 years.  

Table 3-8. Carbon Accumulation Factors for Shrubs and Vines With 95-Percent Confidence 
Intervals 

Component Carbon Accumulation 95-Percent Confidence Interval

Shrubs 0.00135 metric tons C/shrub/year ±0.0007 
Vines 0.28 metric tons C/ha/year ±0.07 

Source: Ogle et al., 2019b, i.e., IPCC Tier 1 factors. 
Probability density functions have a normal distribution that can be used to propagate error through the analysis and 
quantify uncertainty. The confidence intervals represent uncertainty for a national scale application of the method, and so 
there may be additional uncertainty with application of this method at the entity scale that is not quantified. 

If woody products are harvested from the system, estimate stock change using the approaches 
described in chapter 5. Woody products may be harvested from silvopasture, alley cropping, and 
other agroforestry practices, providing a variety of products such as veneer, saw timber, and 
bioenergy feedstocks. 

Since this is a stock difference method, the entity should include any woody plant removals (trees, 
shrubs, and/or vines) that occurred in the current year to reflect the loss of carbon from the 
previous year. Carbon dioxide emissions associated with burning are not estimated. Non-CO2 trace 
gas emissions occur from burning and can be estimated with methods described in section 3.2.8.  

3.2.1.2 Activity Data 

Herbaceous Biomass 

Activity and related data needed to estimate biomass carbon for annual crops and grazing lands (as 
applicable) include: 

• Crop type, cropland area, and harvest indices
• Type of forage, grazing area, and peak forage yield data
• Total aboveground yield of crop or peak forage yield for grazing lands (metric tons biomass

per hectare)
• Root-to-shoot ratios
• Carbon fractions
• Dry matter content of forage and harvested crop biomass to estimate dry matter content
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Peak forage estimates for grazing lands can be estimated using the biomass clipping method (see 
chapter 15 of USDA, 2011). This method requires removal of forage samples from the field. Other 
methods can also be used, including the comparative yield method for rangelands (see chapter 13 
of USDA, 2011) or the Robel pole method on rangelands or pastures (Harmoney et al., 1997; 
Vermeire et al., 2002). Any sampling that is done, whether destructive or nondestructive, should 
occur at locations that are representative of the land parcel. 

If sampling the forage is not feasible, default expected annual biomass production values are 
provided by the USDA Natural Resources Conservation Service (NRCS) in Ecological Site 
Descriptions (ESDs) (USDA, n.d.). After identifying the appropriate ESD, the entity would select the 
plant community that is representative of the parcel. These values represent total production for 
the site, so Yf in equation 3-2 would be set to 1 if the aboveground forage production is obtained 
from an ESD. 

Woody Biomass 

To get activity data to estimate woody biomass carbon in croplands and grazing lands, an entity 
needs to conduct a basic inventory of woody species associated with the land parcel. Activity data 
(as applicable) include:  

• Area of vegetation and/or linear distance of single rows of vegetation
• Species of trees, number by diameter class, and status (live or dead)
• Diameter at breast height for a sample of trees that capture the spacing arrangements and

densities within the parcel
• Count, age, and status (live or dead) of shrubs that capture the spacing arrangements and

densities within the parcel
• Area in vine crops for vineyards

If the entity does not know the age of the shrubs or vines, it should assume that the shrubs are 
beyond the 30-year threshold and the vines are beyond the 20-year threshold. 

Box 3-3. Sampling Basics for Woody Plants in Croplands and Grazing Lands 
For entities that use a sampling approach, there are many terms and definitions for sampling and 
estimation. This box describes a few important terms and concepts relevant to a basic land 
inventory—consistent with the methods described in this chapter, for which aboveground 
biomass carbon is the population parameter of interest. See McRoberts et al., 2015, for more 
details. 
First is establishing a sampling frame for the trees within the population of interest. To do this, 
the population of trees must be identified on the land parcel. This can be accomplished with a 
paper map, a digital data product from web-based maps (e.g., Google, Bing), a product developed 
as part of a geographic information system, or information in another format. Once the location 
of trees is identified, a sample frame can be established that includes all possible sampling units 
(i.e., plots) within the land parcel. The selection of sample units is based on the sampling design 
within the sampling frame for the population.  
 Equal probability sampling of the sampling units should be used: that is, sampling unit

locations, i.e., trees, should have an equal probability of being selected for the sample within
the land parcel. A convenient way to choose sample locations is systematic sampling—that is,
overlaying a grid on the defined population.
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 The plot configuration (the size and shape of the plot) may depend on the sampling method.
For randomly spaced woody plants, it is recommended that the plot configuration use a fixed
area with circular plots.

 Finally, it is important to determine an appropriate sample size—the number of plots to be
measured within the population. Typically, as the sample size increases, the variance of the
population parameter of interest (e.g., woody biomass carbon stocks) decreases, and the
precision of the estimate increases (McRoberts et al., 2015). To predict sample size, an entity
must estimate a measure of variation and specify a maximum allowable error (Cochran,
1977). Interactive “sample size calculators” are available online.

Recommended inventory methods depend on whether the woody plants are organized in rows 
(single or multiple) such as windbreaks, orchards, or alley cropping or randomly spaced (e.g., 
riparian forest buffers, silvopasture systems converted from natural woodlands) (figure 3-1). If a 
parcel and/or the vegetation being surveyed is very homogenous and there is a complete census of 
the vegetation in the land parcel (species, age, and count), the entity will only need to sample a few 
individual trees to get an average dbh.  

Figure 3-1. Plan Views Showing Which Method to Apply Based on Plant Arrangement 

Method 1: In organized plantings, a sample plot with 10 consecutive trees or shrubs is 
recommended based on methods described in NRCS’s National Forestry Handbook (USDA, 2004). 
Within a uniform parcel, a representative segment should be chosen within each row, assuming the 
same species are planted in the row. If the parcel is not uniform, additional sample plots of 10 
plants may be necessary to capture differences. In future years, recording plot locations and 
measuring the same trees will reduce uncertainty. If a row has more than one tree species, sample 
only one species at a time, and treat each one as a separate row for length.  

Record the species and status (alive or dead), along with measuring the dbh for trees. If the row 
contains shrubs, record the age and status. If the age is not known, assume shrubs are at the 15-
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year midpoint on the 30-year maturity cycle. Measure and record the linear distance to the next 
tree or shrub in the row. Repeat until all 10 trees or shrubs have been inventoried. Record the total 
distance of the row that was sampled. Continue to the next row until all sampling is completed. 
Refer to available manuals for more guidance on sampling (USDA, 2004; Zobrist et al., 2012). 

Method 2: In randomly spaced vegetation or where there are more than three to five rows, a 
standard fixed plot approach is recommended based on methods described in the National Forest 
Handbook (USDA, 2004). The standard fixed plot is a circle with a radius of 26.3 feet (8 meters), 
which represents a plot size of 1/20th or 0.05 acre (0.02 ha). Parcels of 1–10 acres (0.4–4.0 ha) 
require measurements from at least two fixed plots.  

Take at least one extra fixed plot for each additional 10 acres of parcel size. If one portion of the 
stand has a different mix of species, was planted in a different year, or has a different soil or 
moisture regime resulting in different growing conditions, treat that area as a separate parcel in 
estimating carbon storage. Remember that increasing sample size reduces the variance of the 
population parameter of interest [e.g., woody biomass carbon stocks] and increases the precision of 
the estimate. Further, areas with substantial variability in the individuals within the population or 
the site conditions within the population may require additional sampling. To aid in 
remeasurement in future years, record plot locations.  

Measure all trees with a stem height of 4.5 feet (1.37 meters) or more with a diameter greater than 
1 inch (2.5 centimeters) that fall within a fixed plot. Measure the dbh and record the species and 
diameter of all trees inside that plot, including status (live or dead). For shrubs, record approximate 
age, status (live or dead), and number. Continue to the next plot until all sampling is completed. 
Refer to available manuals for more guidance on sampling (USDA, 2004; Zobrist et al., 2012). 

3.2.1.3 Limitations and Uncertainty 
Herbaceous biomass C: Use the explicit model-based method to estimate uncertainty for 
herbaceous biomass C (see chapter 8). Uncertainty is assumed to be minor for the management 
activity data provided by the entity, and therefore the values are assumed to be certain. The tables 
presented in section 3.2.1.1 provide the uncertainty for model parameters used in the equations for 
herbaceous biomass C, and these uncertainties are combined using a Monte Carlo simulation. See 
chapter 8 for more information about the explicit model-based method. 

Specific sources of uncertainty are due to lack of precision in crop or forage yields, residue-yield 
ratios, root-to-shoot ratios, and carbon fractions, as well as the uncertainties associated with 
estimating the biomass carbon stocks for the other land uses. In particular, the herbaceous biomass 
method assumes that half of the crop harvest yields or peak forage amounts provide an accurate 
estimate of the mean annual carbon stock in cropland or grazing lands. This assumption warrants 
further study, and the method may be further refined in the future. 

Woody biomass C: Use the measurement-based method to estimate uncertainty for the 
herbaceous biomass C (see chapter 8). Sampling and measurement error and error associated with 
regression models influence the uncertainty associated with estimating carbon in live trees (see 
Melson et al., 2011; further discussion in chapter 6). The tables in section 3.2.1.1 provide the 
uncertainty for the model parameters used in the equations for woody biomass C and the 
quantification of uncertainty in measurements are combined using a Monte Carlo simulation and 
discussed in the section 3.2.1.2. Uncertainties in measurements and model parameters are 
combined using a Monte Carlo simulation. See chapter 8 for more information about the explicit 
model-based method. 



Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems 

3-26 

Estimating carbon in agroforestry trees, especially for young seedlings and saplings (up to about 10 
years depending on species and growing conditions) remains highly uncertain, particularly since 
traditional forestry-derived equations have been shown to underestimate whole-tree biomass in 
agroforestry systems, necessitating additional field work to further document biomass carbon 
allocation differences. Melson et al. (2011) noted in their forest-based research that estimation of 
live-tree carbon was sensitive to model selection (with an error of potentially 20 to 40 percent), 
and that model selection could be improved by matching tree form to existing equations. Zhou et al. 
(2015) found that whole-tree biomass for individual trees was underestimated by at least 18 
percent in the Great Plains for three shelterbelt species, indicating that a correction factor could 
reduce uncertainty. At this point, a correction factor is not suggested for the method, and the 
estimates should be considered conservative. In addition, woody belowground biomass estimates 
are calculated using aboveground density allometry (Chojnacky et al., 2014), which has large 
uncertainties due to a lack of data. See chapter 6 for further discussion of the uncertainty of tree 
volume and biomass equations. The Tier 1 method for shrubs and vines relies on regional defaults 
that have significant uncertainty associated with the default coefficients. 

Limitations: While there are major sources of uncertainty for the biomass C methods, there are no 
known limitations to its application to all croplands and grazing lands in the United States. 

3.2.2 Litter Carbon Stock Changes 
Most herbaceous biomass in the form of plant litter or crop residue decomposes within 1 year on 
the soil surface. Therefore, the influence of litter carbon stocks on atmospheric CO2 is assumed to be 
insignificant once land-use change effects on biomass (and subsequent influence on soil carbon 
stocks) are addressed. Further methods development may be possible in the future.  

For cropland or grazing land systems with trees, coarse woody debris and litter carbon should be 
estimated based on the forest methods in chapter 5. The loss of litter and coarse woody debris with 
the conversion from forestland to cropland and grazing land is also addressed in chapter 5. 

3.2.3 Soil Carbon Stock Changes 

Box 3-4. Method for Estimating Soil Carbon Stock Changes 

Mineral Soils 
 Use a stock difference approach (Ogle et al., 2019a) to estimate the change in SOC based on

the amount of SOC at the beginning and end of the year. Estimate the stocks with the DayCent 
ecosystem model (Tier 3) or country-specific stock change factors (Tier 2) depending on the 
crops and soil conditions.  

 Estimate the change in SOC from biochar carbon amendments as a net increase using an
empirical method developed by IPCC (Ogle et al., 2019a).

Organic Soils 
 Estimate SOC stock changes from the drainage of organic soils with the IPCC equation using

country-specific emission factors (Tier 2) (Ogle et al., 2019a). 

3.2.3.1 Description of Method 
This method accounts for the influence of land use and management on SOC and associated CO2 flux 
to the atmosphere for mineral soils using a carbon stock difference approach for all practices (Ogle 
et al., 2019a) except biochar amendments (see appendix 3A.2 for rationale). The stock difference 
method is based on estimating the amount of SOC (i.e., stock) at the beginning and end of the year, 
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then subtracting the stocks to determine the change. Biochar amendments are estimated with a 
gain-loss method (i.e., estimating the inputs and outputs rather than the stock of biochar carbon in 
the soil) in which the net effect is a long-term gain of carbon in soils (Ogle et al., 2019a). As with 
biochar carbon, a gain-loss method is used to estimate carbon stock changes in organic soils (i.e., 
Histosols), but in this case, the net change is a loss of carbon from the soil due to drainage of the 
organic soil. If organic soils are not drained, there is minimal carbon loss for the land parcel. 
Emissions occur in organic soils following drainage due to the conversion of an anaerobic 
environment with a high-water table to aerobic conditions (Armentano and Menges, 1986), 
resulting in a significant loss of carbon to the atmosphere (Ogle et al., 2003).  

Mineral Soils 

The model to estimate changes in SOC stocks for mineral soils has been adapted from the method 
developed by IPCC (Ogle et al., 2019a). Use equation 3-8 to estimate the annual change in SOC 
stocks to a 30-centimeter depth, and net change in SOC from a biochar carbon amendment for a 
land parcel. 

Equation 3-8: Change in SOC Stocks for Mineral Soils 

∆𝑇𝑇𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛𝑝𝑝𝑚𝑚𝑏𝑏𝑏𝑏 = (∆𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛𝑝𝑝𝑚𝑚𝑏𝑏𝑏𝑏 + ∆𝑆𝑆𝑂𝑂𝐶𝐶𝐻𝐻𝐶𝐶) × CO2MW 

Where: 
ΔTCmineral = annual change in mineral soil organic carbon stock plus biochar amendments 

(metric tons CO2-eq) 
ΔCmineral = annual change in mineral soil organic carbon stock (metric tons C) 
ΔSOCBC = annual change in soil organic carbon stock from biochar amendments 

(metric tons C) 
CO2MW = ratio of molecular weight of CO2 to carbon = 44/12 

(metric tons CO2/metric tons C) 

∆𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛𝑝𝑝𝑚𝑚𝑏𝑏𝑏𝑏 = [(𝑆𝑆𝑂𝑂𝐶𝐶𝑡𝑡 − 𝑆𝑆𝑂𝑂𝐶𝐶𝑡𝑡−1) ÷ 𝑃𝑃] × 𝐴𝐴 

Where: 
ΔCmineral = annual change in mineral soil organic carbon stock (metric tons C) 
SOCt = soil organic carbon stock at the end of the year (metric tons C/ha) 
SOCt‐1 = soil organic carbon stock at the beginning of the year (metric tons C/ha) 
t = 1 year for Tier 3 and 20 years for Tier 2  
A = area of the parcel (ha) 

Use a Tier 3 method (with the DayCent ecosystem model) or a Tier 2 method (with empirical stock 
change factors) to estimate the SOC stocks at the beginning and end of each year for equation 3-8. 
The Tier 3 method has been shown to have less uncertainty (U.S. EPA, 2020; Del Grosso et al., 
2011), but has not been fully developed and/or tested for all soil types and crops that are grown in 
the United States. Accordingly, use figure 3-2 to choose the right method for a specific land parcel.  
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a Classified as soils whose volume is more than 35 percent gravel, cobbles, or shale. 
b If other crops are grown in rotation with this set of crops, the IPCC Tier 2 method should be used to estimate soil C 

stock changes. Other crops may be included with the Tier 3 method if they are included in the Tier 3 method for future 
U.S. National GHG Inventories (published annually; most recent version is U.S. EPA, 2020). In addition, USDA may 
review and potentially approve crops for inclusion in the Tier 3 method if crop production can be simulated with 
reasonable accuracy using the DayCent model. 

Figure 3-2. Decision Tree to Choose the Method for Estimating the SOC Stock Changes for a 
Land Parcel Using the ΔCmineral From Equation 3-8  

Tier 3 method: This method involves using the DayCent ecosystem model (note: DayCent is also 
used to estimate direct soil N2O emissions for mineral soils—see section 3.2.4.1—using the same 
approach described in this section), consistent with the approach used for the U.S. National GHG 
Inventory (U.S. EPA, 2020). It involves a three-step process (in which the first two steps produce an 
estimate of initial SOC stocks prior to the reporting period):  

• Run the model to a steady-state condition5 (i.e., equilibrium) with native vegetation,6

historical climate data,7 and the soil physical attributes for the land parcel.
• Simulate a period from the mid-1800s to the most recent year prior to the first year in the

reporting period. The entity chooses the practices that best match the land management of
the parcel. In addition, the entity may enter more specific information about the
management for the parcel during the last 30 years of the time series if available, including

5 The goal of the steady-state simulation is to set the state-variables (e.g., amount of C in the soil organic 
matter pools) in a range that is consistent with environmental conditions at the site. 
6 Broad vegetation types representing the dominant mixture of C3 and C4 grasses in grasslands and dominant 
forest types such as broadleaf deciduous or evergreen needleleaf. 
7 Historical data will depend on the time series, and PRISM has data from 1980 to the present. See section 
3.2.3.3. 



Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems 

3-29 

specific crops planted, tillage practices, fertilization practices, irrigation, and other 
management activity. Otherwise, the entity can choose from the general management 
options based on common regional practices (see section 3.2.3.2 for more information). The 
resulting carbon stock at the end of the simulation provides the initial baseline value (SOCt‐

1). 
• Estimate stocks during the reporting period based on the management activity for the land

parcel. The entity provides the management activity for the land parcel, including crops
planted, tillage practices, fertilization practices, irrigation, and other management activity
data (see section 3.2.3.2 for more information). Apply the implicit model-based method to
estimate uncertainty in the prediction of SOC stocks from the DayCent ecosystem model as
discussed in section 3.2.3.4.

Estimate the change in SOC stocks by subtracting the initial SOC stock (i.e., SOC stock at the end of 
the previous year) (SOCt‐1) from the stock at the end of the current year (SOCt) for each year in the 
reporting period after applying the implicit model-based method (see section 3.2.3.4). 

Estimate eroded carbon with RUSLE2 for water erosion (USDA, 2008) and WEPS for wind erosion 
(USDA, 2020). The amount of eroded SOC is reported separately from the DayCent model results for 
information purposes in order to consider uncertainty in the fate of eroded SOC as part of a 
mitigation program.8  

Tier 2 method: The IPCC Tier 2 method is also consistent with the U.S. National GHG Inventory’s 
approach (Ogle et al., 2003, 2006; U.S. EPA, 2020). It is based on a reference carbon stock under 
long-term cultivation, with stock change factors applied to estimate the change in stock given the 
land use (FLU), management (FMG), and organic matter input (FI) for the land parcel. Estimate the 
SOC stock with country-specific factors using equation 3-9 for the land use, management, and input 
conditions during the reporting year and the conditions 20 years prior to the reporting year.9  

Equation 3-9: SOC Stock for Mineral Soils Using the IPCC Tier 2 Method 

𝑆𝑆𝑂𝑂𝐶𝐶 = 𝑆𝑆𝑂𝑂𝐶𝐶𝑚𝑚𝑝𝑝𝑓𝑓 × 𝐹𝐹𝐿𝐿𝐿𝐿 × 𝐹𝐹𝑀𝑀𝑀𝑀 × 𝐹𝐹𝐼𝐼 

Where: 
SOC = soil organic carbon stock at the beginning (SOCt-1) or end (SOCt) of the year 

(metric tons C/ha) 
SOCref = reference soil organic carbon stocks for U.S. agricultural lands in long-term 

cultivation (metric tons C/ha) 
FLU = stock change factor for land use (dimensionless) 
FMG = stock change factor for management regime (dimensionless) 
FI = stock change factor for the input of organic matter (dimensionless) 

8 Eroded SOC can be transferred laterally across the landscape and retained in the biosphere instead of 
emitted to the atmosphere as CO2 (Van Oost et al., 2007; Wang et al., 2017). 
9 It is possible to estimate changes over less than 20 years, but the differences in stocks must be divided by 20 
years, which is the stock change factor dependence as discussed in the IPCC guidelines (Ogle et al. 2019a). If 
the time frame is less than 20 years, it is also important to recognize that effects will continue into the next 
time period(s) in the analysis until 20 years has elapsed since the management, input or land-use change 
occurred. 
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The reference stocks for this equation are presented in table 3-9 and the stock change factors are 
provided in table 3-10. The U.S.-specific factors are based on a reference condition with long-term 
cultivation of the land (Ogle et al., 2003). The stock change factors for land use (FLU) represent 
changes in land use, such as cultivated (i.e., annual crop production) to uncultivated land uses (e.g., 
perennial crops and grazing land), and setting aside land into the reserve from crop production. 
The stock change factors for management (FMG) represent the effect of changing tillage in annual 
croplands and grazing intensity in grazing lands. The stock change factors for organic matter input 
(FI) represent the influence of changing the input from crop or forage production, as well as the 
external organic matter additions, such as manure amendments. The change from the reference 
condition associated with land use, management, and input on the SOC stock over 20 years. 
Therefore, the stock at the beginning of the year (SOCt‐1) is based on the previous management 
practices and land use before the entity adopted the current practices. If land use, management, and 
organic matter input have not changed for 20 years, the change in SOC stock (ΔCmineral in equation 
3-8) is equal to 0. 

Table 3-9. Reference Carbon Stocks and 95-Percent Confidence Intervals for the United 
States (Metric Tons C/ha) 

IPCC Soil 
Categories 

USDA 
Taxonomic Soil 

Orders 

Cold 
Temperate, 

Dry 

Cold 
Temperate, 

Moist 

Warm 
Temperate, 

Dry 

Warm 
Temperate, 

Moist 

Sub-
Tropical, 

Dry 

Sub-
Tropical, 

Moist 

High clay 
activity 
mineral 
soils 

Vertisols, 
Mollisols, 
Inceptisols, 
Aridisols, and 
high base status 
Alfisols 

42 (±2.7) 65 (±2.2) 37 (±2.2) 51 (±2.0) 42 (±5.1) 57 
(±25.5) 

Low clay 
activity 
mineral 
soils 

Ultisols, Oxisols, 
acidic Alfisols, 
and many 
Entisols 

45 (±5.9) 52 (±4.5) 25 (±2.7) 40 (±2.4) 39 (±9.4) 47 
(±27.2) 

Sandy soils 

Any soils with 
greater than 70 
percent sand 
and less than 8 
percent clay 
(often Entisols) 

24 (±9.4) 40 (±7.3) 16 (±4.7) 30 (±3.9) 33 (±3.7) 50 
(±15.5) 

Volcanic 
soils Andisols 124 (±22.3) 114 (±32.7) 124 (±22.3) 124 (±22.3) 124 

(±22.3) 
128 

(±29.4) 

Spodic soils Spodosols 86 (±12.7) 74 (±13.3) 86 (±12.7) 107 (±16.3) 86 
(±12.7) 

86 
(±12.7) 

Aquic soils Soils with aquic 
suborder 86 (±22.3) 89 (±7.1) 48 (±7.1) 51 (±3.5) 63 (±3.7) 48 

(±16.5) 

Source: U.S. EPA, 2020. 
Stocks represent the amount of SOC with long-term cultivation of the land parcel. The values in parentheses are 95-
percent confidence intervals based on a normal distribution that can be used to propagate error through the analysis and 
quantify uncertainty. The confidence intervals represent uncertainty for a national scale application of the method, and so 
there will be additional uncertainty with application of this method at the entity scale that is not quantified. 
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Table 3-10. Land Use, Management, and Input Factors and 95-Percent Confidence Intervals 
for the United States 

Parameter 
Subtropical Moist 
and Warm Moist 

Climate 

Subtropical Dry 
and Warm Dry 

Climate 

Cool Moist 
Climate 

Cool Dry 
Climate 

Land-Use Change Factors 
Cultivateda 1 1 1 1 
Wetland rice production factorb 2.14±0.13 2.14±0.13 1.85±0.15 1.85±0.15 
General uncultivated 1.58±0.12 1.58±0.12 1.37±0.15 1.37±0.15 
Set-asides 1.18±0.19 1.18±0.19 1.05±0.24 1.05±0.24 
Cropland Management Factors 
Full intensive tilla 1 1 1 1 
Reduced till 1.05±0.08 1.00±0.09 1.05±0.08 1.00±0.09 
No-till 1.14±0.06 1.09±0.07 1.14±0.06 1.09±0.07 
Cropland Input Factors 
Low 0.94±0.02 0.94±0.02 0.94±0.02 0.94±0.02 
Mediuma 1 1 1 1 
High 1.07±0.04 1.07±0.04 1.07±0.04 1.07±0.04 
High with amendmentc 1.44±0.19 1.37±0.16 1.44±0.13 1.37±0.16 
Grazing Land Management Factorsc 
Native or nominally managed 
grazing landsa 1 1 1 1 

Improved 1.14±0.25 1.14±0.25 1.14±0.25 1.14±0.25 
Moderately degraded 0.90±0.14 0.90±0.14 0.90±0.14 0.90±0.14 
Severely degraded 0.70±0.55 0.70±0.55 0.70±0.55 0.70±0.55 
Grazing Land Input Factorsc 
Improved with medium inputa 1 1 1 1 
Improved with high input 1.11±0.15 1.11±0.15 1.11±0.15 1.11±0.15 

Source: U.S. EPA, 2020. 
The values in parentheses are 95-percent confidence intervals based on a normal distribution that can be used to 
propagate error through the analysis and quantify uncertainty. The confidence intervals represent uncertainty for a 
national scale application of the method, and so there will be additional uncertainty with application of this method at the 
entity scale that is not quantified.
a Uncertainty is not applicable because it is already incorporated into the reference carbon stock. 
b U.S.-specific factors are not estimated for wetland rice production due to a lack of studies addressing the impacts in the 

United States. Factors provided by IPCC for the Tier 1 method (Ogle et al., 2019b) are used as the best estimates of 
these impacts. This factor was derived by combining the land-use change factor for general uncultivated (in this table) 
and the rice cultivation factor from the IPCC guidelines. Management and input factors are set to 1 for rice cultivation. 

c U.S.-specific factors are not estimated for high input with organic amendment for croplands, or for grazing land 
management, due to a lack of studies addressing the impacts in the United States. Factors provided by IPCC for the Tier 
1 method (Ogle et al., 2019b; McConkey et al., 2019) are used as the best estimates of these impacts.  

Apply the stock change factors in table 3-10 to a land parcel based on the previous 5 years of 
cropping history, using the following guidance: 

• Land-use change factors. For land use, apply the cultivated factor to parcels that were
cultivated with tillage for annual crop production or mixed annual crops and perennial
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rotations, such as hay or pasture in rotation with annual crops, during the previous 5 years. 
Apply the land use factor for wetland rice production to parcels with continuous wetland 
rice production during the previous 5 years. If the parcel had some rice production but was 
not continuously used for the production of rice during the previous 5 years, then apply the 
cultivated land factor. Apply the general uncultivated land factor for other land uses or 
nonannual crop management systems, such as grazing land, perennial hay crops, perennial 
tree crops, and agroforestry. Apply the set-aside factor to land parcels set aside from 
production during the past 5 years for up to 20 years. Following 20 years, apply the general 
uncultivated factor to such parcels. 

• Cropland management factors. Management factors are based on tillage management in
croplands. The factors are applied to land parcels in cropland based on the most intensive
tillage practice during the last 5 years, even if the practice is only applied in 1 year (full
intensive till > reduced till > no-till). Therefore, the estimation will only include no-till if
there is continuous adoption over the entire 5 years and reduced till if there is continuous
reduced till or a combination of reduced till and no-till.

• Cropland input factors. Input factors in croplands are based on the IPCC classification for
cropland systems (Ogle et al., 2019b; see figure 5-1 for a classification diagram) according
to crop selection and rotation practices in addition to the level of inputs to enhance
production in croplands. Input classifications include low, medium, high and high with
amendments. Guidance for selecting the appropriate input factor is provided below.
 Assign the low input factor to the land parcel if residues were removed or burned in 2 

or more of the 5 previous years unless there was a manure amendment in 2 or more of 
the 5 previous years. In that case, use the medium input factor. Also assign low input if a 
parcel’s crops produced low amounts of residue, i.e., low residue crop, following harvest 
in 2 or more of the previous 5 years or if there are 2 or more years of bare-summer 
fallow in the previous 5 years. For example, vegetable or fiber crops such as cotton and 
tobacco are low residue crops; see table 3-11 for a list of low- vs. medium-/high-residue 
crops. However, assign medium input if these land parcels received a manure 
amendment or cover crops in at least 2 of the previous 5 years, or are managed with a 
rotation of mixed annual crops and perennials—for example, hay or pasture in rotation 
with annual crops. 

 If mineral fertilizers were not applied to a parcel during the previous 5 years, this 
should be considered low input. Even if fertilizers are not applied, the cropping system 
is medium input if the entity applied manure amendments or irrigation, has grown 
cover crops, or has grown higher-yielding varieties in 2 or more of the previous 5 years, 
or if the parcel was managed with mixed annual crops and perennial rotation in the 
previous 5 years.  

 Assign medium input to all other cropland parcels, with two exceptions: (1) for land 
parcels with manure amendments in 2 or more of the previous 5 years, assign high 
input with organic amendments; and (2) assign high input if the entity used irrigation, 
had cover crops, and/or had a more productive crop variety for 2 or more years in the 
previous 5 years, or if the land parcel is managed with a rotation of mixed annual crops 
and perennials, such as hay or pasture in rotation with annual crops. 
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Table 3-11. Classification of Crops Into Low, Medium, or High Residue Production Categories 
for Estimation of Input Factors in the Tier 2 Soil Carbon Method

Crop Classification 

Barley Medium 
Beans Medium 
Corn grain High 
Corn silagea Low 
Cotton Low 
Millet Medium 
Oats Medium 
Peanuts Medium 
Potatoes Low 
Rice High 
Rye Medium 
Sorghum grain High 
Sorghum silagea Low 
Soybean Medium 
Sugar beets Low 
Sugarcane High 
Sunflower Medium 
Tobacco Low 
Wheat Medium 
Alfalfa hay High 
Nonlegume/grass hay High 
Vegetables Low 
Other crops Medium 
a Silage crops are assumed to have low residue production, but these crops can be classified as medium if 

25 percent or more of the biomass is left as residue following harvest. 

• Grazing land management factors. For grazing land, management factors are based on the
level of improvement or degradation in the land parcel. Degradation is largely determined
by reduction in production potential/ecological function/biological integrity of an
ecological site due to disturbance resulting in phase shifts and/or state change in the USDA-
NRCS ecological state-and-transition model from the reference state condition (USDA,
2017). Moderately degraded factors are applied to the land parcel if disturbance shifts
vegetation composition and moderate loss in forage production occurs (i.e., phase shifts or
state changes where reversal of the disturbance can result in a restoration pathway to the
original state with external inputs or management). Severely degraded factors are applied
to land parcel if disturbance induces an ecological state change with a large loss of forage
production that also requires external inputs and/or management to return the plant
community back to the Reference Plant Community of the ecological site because there is no
restoration pathway to restore the site productivity. If the grazing land parcel is not
degraded, then improvements can lead to more production and more SOC. The improved
management factor is applied to the land parcel improved with a single management factor.
Improvements may include fertilization, planting more productive forage species than is
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typical for the region, irrigation, liming, and inter-seeding legumes with grass forage 
species. 

• Grazing land input factors. Determine input categories for grazing lands by the level of
improvement to the grazing land if there is no degradation. Medium-input grazing land has
a single improvement (e.g., fertilization, irrigation, or growing more productive forage
species than is typical for the region or moving to a more productive/higher functioning
phase or ecological state compared to the reference state condition in the ecological state
and transition model) and a light to moderate grazing regime based on recommended
stocking rates in the local area. The input factor is 1 for medium input because the effect of a
single improvement is represented by the management factor for improved grazing land
management. Assign high input if a land parcel is managed with more than one
improvement and there is a light to moderate grazing regime.

Biochar carbon amendments: As described by Woolf et al. (2021), estimate the change in SOC 
stocks associated with biochar amendments to soils with equation 3-10, a method originally 
developed by IPCC (Ogle et al., 2019a). The long-term carbon gain is calculated as the product of the 
mass of biochar added to the soil (Mbc), its carbon fraction (Fc), and the fraction that will persist un-
mineralized over 100 years (Fperm). 

Equation 3-10: Change in SOC Stocks for Mineral Soils from Biochar Amendments 

∆𝑆𝑆𝑂𝑂𝐶𝐶𝐻𝐻𝐶𝐶 = 𝐷𝐷𝑏𝑏𝑏𝑏 × 𝐹𝐹𝐶𝐶 × 𝐹𝐹𝑝𝑝𝑝𝑝𝑚𝑚𝑏𝑏 

Where: 
ΔSOCBC = annual change in mineral soil organic carbon stock from biochar amendments 

(metric tons C) 
Mbc = mass of biochar added to soil in a year (metric tons biochar) 
FC = carbon fraction of biochar (metric tons C/metric tons biochar) 
Fperm = fraction of biochar carbon remaining after 100 years (metric tons C/metric 

tons C) 

Values of FC are provided in table 3-12, disaggregated by feedstock type and production technology 
(pyrolysis or gasification).  

Table 3-12. Carbon Fraction (FC) of Biochar and 95-Percent Confidence Intervals From 
Various Feedstock Types Through Either Pyrolysis or Gasification 

Feedstock Production Technology Fc 

Manure 
Pyrolysis 0.36 (±0.18) 

Gasification 0.09 (±0.04) 

Wood 
Pyrolysis 0.73 (±0.33) 

Gasification 0.52 (±0.27) 

Herbaceous biomassa 
Pyrolysis 0.61 (±0.29) 

Gasification 0.28 (±0.14) 

Rice residueb 
Pyrolysis 0.46 (±0.20) 

Gasification 0.13 (±0.06) 
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Feedstock Production Technology Fc 

Nut shells, pits, and stones 
Pyrolysis 0.70 (±0.29) 

Gasification 0.40 (±0.22) 

Biosolidsc 
Pyrolysis 0.33 (±0.14) 

Gasification 0.07 (±0.04) 

Source: Estimated using regression from Neves et al. (2011), corrected for ash content using biochar yield from Woolf et 
al. (2014). The confidence intervals represent uncertainty for an entity scale application of the method. 
FC is given on a dry mass basis. The values in parentheses are 95-percent confidence intervals based on a normal 
distribution that can be used to propagate error through the analysis and quantify uncertainty. 
a Herbaceous feedstocks include grasses, forbs, and leaves, but not rice hulls and rice straw. 
b Rice residues include both rice hulls and rice straw. 
c Biosolids include both paper sludge and sewage sludge. 

Estimate the Fperm factor using equation 3-11, as a function of the molar weight of hydrogen to 
organic carbon ratio of the biochar atomic composition (Woolf et al., 2021).  

Equation 3-11: Equation to Estimate the Permanence Factor for Biochar Amendments to 
Soils 

𝐹𝐹𝑝𝑝𝑝𝑝𝑚𝑚𝑏𝑏 = 1.09 − 0.6 × H:Corg 

Where: 
Fperm = fraction of biochar carbon remaining after 100 years (metric tons C/metric 

tons C) 
H:Corg = molar ratio of the H to the organic carbon content of the biochar amendment 

(mol H/mol organic C) (valid values range between 0.15 and 0.7) 

Parameter standard deviations: 1.09 (±0.06), 0.6 (±0.09) 

Organic materials with a value of H:Corg greater than 0.7 are not persistent enough to be classified as 
biochar for the purposes of long-term carbon sequestration. Accordingly, amendments with H:Corg 
above 0.7 are not to be treated as biochar, but should be treated as organic matter additions in the 
mineral soil calculation methodology in equation 3-8 (ΔCmineral). In addition, H:Corg values below 0.15 
are not typical of biochar, and in this case, the H:Corg value should be set to 0.15. There may be more 
C storage with H:Corg values less than 0.15, but research is needed to estimate the additional amount 
beyond the level with a H:Corg value of 0.15. 

Organic Soils 

The methodology for estimating soil carbon stock changes in drained organic soils has been 
adopted from IPCC (Ogle et al., 2019a). The method applies to Histosols and soils that have high 
organic matter content and are developed under saturated, anaerobic conditions for at least part of 
the year, including Histels, Historthels, and Histoturbels. Use equation 3-12 to estimate emissions 
from a land parcel. 
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Equation 3-12: Change in SOC Stocks for Organic Soils 

∆𝐶𝐶𝑂𝑂𝑚𝑚𝑎𝑎𝑏𝑏𝑛𝑛𝑏𝑏𝑏𝑏 = 𝐴𝐴 × 𝐸𝐸𝐹𝐹 × CO2MW 

Where: 
ΔCOrganic  = annual CO2 emissions from drained organic soils in crop and grazing lands 

(metric tons CO2-eq) 
A = area of drained organic soils (ha) 
EF = annual emission factor (metric tons C/ha) 
CO2MW  = ratio of molecular weight of CO2 to C = 44/12 (metric tons CO2/metric tons C) 

Emission factors have been adopted from the U.S. National GHG Inventory (U.S. EPA, 2020; Ogle et 
al., 2003) and are region-specific and based on typical drainage patterns and climatic controls on 
decomposition rates. Drained organic soils in cropland lose carbon at rates presented in table 3-13. 
Organic soils in grazing lands are typically not drained to the depth of cropland systems, and 
therefore the emission factors are only 25 percent of the cropland values (Ogle et al., 2003). The 
carbon loss rate will be 0 if organic soils are not drained for crop production or grazing. However, 
CH4 emissions will need to be estimated for these systems if they are not drained, particularly if 
they are used for rice cultivation (see section 3.2.6). The emission factors are provided in table 
3-13. 

Table 3-13. Emission Factors and 95-Percent Confidence Intervals for Organic Soils (i.e., 
Histosols) That Are Drained in Cropland and Grazing Land in the United States  

Emission Factor for  
Drained Organic Soils 

(metric tons C/ha) 

Cool Temperate 
Climate 

Warm Temperate 
Climate 

Subtropical 
Climate 

 Cropland 11.2 (±2.5) 14.0 (±2.5) 14.3 (±6.5) 
 Grazing land 2.8 (±1.3) 3.5 (±1.3) 3.6 (±3.3) 

Source: U.S. EPA, 2020. 
The values in parentheses are 95-percent confidence intervals based on a normal distribution that can be used to 
propagate error through the analysis and quantify uncertainty. The confidence intervals represent uncertainty for a 
national scale application of the method, and so there may be additional uncertainty with application of this method at the 
entity scale that is not quantified. 

Box 3-5. Projecting Soil Carbon Stock Changes 
For the estimation of future soil carbon stock changes, the methods described in this section can 
be applied with the DayCent model and Tier 2 methods in combination with expected 
management practices. For DayCent simulations, the previous 10 years of weather are repeated 
for the projections. The equations should be applied in a baseline scenario and the mitigation 
scenario: the difference in stocks between the two scenarios is an estimate of the technical 
mitigation potential for the land parcel. Biochar carbon stock changes can be approximated 
based on the rate and type of future biochar amendments using equations in this section. 
Projections should only be used for planning; reporting, estimate stock changes from the land 
parcel with the actual weather and management practices. Other considerations—e.g., the cost of 
adopting a new practice, and issues surrounding permanence and leakage—are not addressed 
with these methods but may also influence the amount of GHG mitigation. 
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3.2.3.2 Activity Data 

Overview of Requirements 

Activity data requirements are different for mineral soils and organic soils. For mineral soils, the 
method for croplands requires the following management activity data to estimate ΔCmineral (as 
described in equation 3-8).  

Croplands 

Some requirements are common to the Tier 3 and Tier 2 methods for mineral SOC stock changes: 

• Area of land parcel (i.e., field)
• Crop types and rotation sequence
• Residue management, including proportion harvested, burned, grazed, or left in the field
• Mineral fertilization (yes/no)
• Organic amendments (yes/no)
• Tillage implements and number of passes in each operation10

• Use of irrigation (yes/no)
• Cover crop (yes/no)

The additional information needed for the Tier 3 method using the DayCent process-based model11 
includes: 

• Planting and harvesting dates
• Mineral fertilizer type (including enhanced-efficiency fertilizers with nitrification inhibitors

or polymer-coated fertilizers), application rate, application method (broadcast, banded,
fertigation), and timing of application(s)

• Organic amendment type (e.g., manure and composted manure by livestock type, other
organic fertilizers), and application rate, method and timing of application(s)

• Timing of tillage operations
• Months of the year when land parcel is irrigated
• Use of drainage practices and depth of drainage (common in hydric soils)
• Cover crop types, planting and harvesting dates, and termination method

The additional information needed for the Tier 2 method for biochar C amendments includes: 

• Type and amount of biochar application, and H:Corg ratio of biochar

The method for croplands on organic soils requires the following activity data to estimate ΔCOrganic in 
equation 3-12. 

10 Use this information to determine tillage intensity (i.e., intensive till, reduced till, and no-till), using the 
classification applied in the U.S. National GHG Inventory. See section 3.2.3.2 for more information about the 
tillage classification. 
11 The data requirements for the Tier 3 method are to estimate SOC stock changes and soil N2O emissions (See 
section 3.2.4.2). 
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• Area of drained organic soils on the land parcel (i.e., field)

Grazing Lands 

Some of the activity data requirements for grazing land are common to the Tier 3 and Tier 2 
mineral soil C stock change methods for croplands. The activity data requirements for grazing land 
include: 

• Area of the land parcel (i.e., field)
• Forage type (perennial grass such as cool or warm season grasses, legume, or mixed grass-

legume nitrogen-fixing species)
• Mineral fertilization (yes/no)
• Organic amendments (yes/no)
• Use of irrigation (yes/no)

The additional information needed for the Tier 3 method using the DayCent process-based model 
includes: 

• Mineral fertilizer type (including enhanced-efficiency fertilizers with nitrification inhibitors
or polymer-coated fertilizers) and application rate

• Organic amendment type (e.g., manure and composted manure by livestock type, other
organic fertilizers), and application rate

• Months of the year with grazing
• Animal type and stocking rates
• Grazing method (continuous, rotational grazing, or other type)
• Months of the year when land parcel is irrigated
• Use of drainage practices and depth of drainage ((e.g., drainage to improve grazing

conditions in hydric soils)
• Tillage implements and timing of tillage operations, and/or timing of herbicide applications

for renewal of forage grazing land, in addition to the timing and type of forage that is
replanted or naturally regenerates on the land parcel

The additional information needed for the Tier 2 mineral SOC stock change method includes: 

• Current ecological site and the reference condition for the land parcel based on the USDA-
NRCS ecological state and transition model framework. The reference and alternative states
are available through the USDA-NRCS web soil survey12 The method for grazing lands on
organic soils requires the following activity data to estimate ΔCOrganic in equation 3-12.

• Area of drained organic soils on the land parcel (i.e., field)

12 If the information is not available through the USDA-NRCS web soil survey, then the entity should contact 
USDA-NRCS extension office for guidance on identifying the current and reference conditions. 

https://websoilsurvey.nrcs.usda.gov/app/
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Additional Notes on Activity Data Requirements 

Tillage is categorized into full intensive tillage, reduced till, and no-till depending on the tillage 
implements and the number of passes. The tillage systems are classified based on the most 
intensive practice during the previous 5 years. 

• Full intensive tillage is a full inversion or mixing of the soil with implements such as a
moldboard plow or deep disking; it leaves low surface residue coverage.

• No-till is defined as not disturbing the soil with mixing or inversion, creating only minor
disturbances at the soil surface with seed drills.

• The remainder of the cultivated area is classified as reduced till and includes practices such
as mulch tillage and ridge tillage.

Tillage intensity is estimated for the planting period and the post-harvesting period. For the Tier 3 
method, the intensities for each period are simulated with the model, using an intensity ranking 
from A to K. For the Tier 2 method, the tillage intensity is estimated for the entire year and 
classified into broad categories (i.e., no-till, reduced till, and full intensive till) that are used for 
assigning tillage management factors. The following table provides the tillage system intensity for 
each tillage category, in addition to the intensity categories that are used in the Tier 3 method. 

Table 3-14. Tillage Categories, Intensity Categories for the Tier 3 Method, and Tillage 
Intensity Ranges 

Tillage Category Intensity Categories—Tier 3 Method Tillage System Intensity Range 

No-till 
A 0.001–0.01 
B 0.011–0.04 
C 0.041–0.075 

Reduced till 

D 0.076–0.111 
E 0.112–0.144 
F 0.145–0.162 
G 0.163–0.202 
H 0.203–0.252 

Full intensive till 
I 0.253–0.268 
J 0.269–0.449 
K 0.450–1.00 

Estimate tillage system intensity using equation 3-13. 

The calculation in equation 3-13 starts with the implement that has the effect to the shallowest 
depth (T1), then proceeds with the calculation for each additional implement (T2 to Tn) in order of 
tillage depth from shallow to deepest implement. If two or more implements have the same tillage 
depth, calculate the tillage intensity in order from least to most intensive implement. This 
calculation assumes that each additional tillage implement that mixes the soil does not have a 
significant impact on the decomposition of SOC in the proportion of the soil in the upper layers that 
previous implements have already disturbed. In addition, the influence of shallower tillage 
implements (e.g., T1) cannot exceed the depth of the next tillage implement in the sequence (e.g., 
T2). The tillage intensity cannot be negative. 
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Equation 3-13: Tillage System Intensity 

𝑇𝑇𝐻𝐻 =  
∑ 𝑇𝑇𝑡𝑡𝑡𝑡→𝑛𝑛

30
 

𝑇𝑇1 =  𝐷𝐷𝐸𝐸1  × 𝐷𝐷1 

𝑇𝑇2 = 𝐷𝐷𝐸𝐸2 × (𝐷𝐷2 − 𝑇𝑇1) 

𝑇𝑇𝑛𝑛 = 𝐷𝐷𝐸𝐸𝑛𝑛 × (𝐷𝐷𝑛𝑛 − 𝑇𝑇1 −  … 𝑇𝑇𝑛𝑛−1) 

Where: 
TI = tillage system intensity for all implements used in planting or post-harvesting 

period to a depth of 30 cm 
Tt = tillage intensity for each implement, 1 to n implements (proportion of 

disturbance) 
MEn = mixing efficiency of an implement (proportion of disturbance) 
Dt = depth of the tillage for an implement (cm) 

The mixing efficiencies and soil depth of tillage for each implement are provided below in table 
3-15 and are also available in appendix table A-9 of the Soil and Water Assessment Tool (SWAT) 
model documentation (Arnold et al., 2012).  

Table 3-15. Mixing Efficiencies and Tillage Depths From Common Implements 

Implement Description Mixing Efficiency Tillage Depth (cm) 

Bed Roller 0.25 5 
Bedder (Disk) 0.55 15 
Bedder Disk-Hipper 0.65 15 
Bedder Disk-Row 0.85 10 
Bedder Shaper 0.55 15 
Beet Cultivator 0.25 2.5 
Blade 10 ft 0.25 7.5 
Chisel Plow 0.3 15 
Coulter-Chisel 0.5 15 
Crust Buster 0.1 6 
Culti-Mulch Roller 0.25 2.5 
Culti-Packer Pulverizer 0.35 4 
Cultiweeder 0.3 10 
Deep Ripper-Subsoiler 0.25 35 
Discovator 0.5 2.5 
Disk Border Maker 0.55 15 
Disk Chisel (Mulch Tiller) 0.55 15 
Disk Plow 0.85 10 
Duckfoot Cultivator 0.55 10 
Field Conditioner (Scratcher) 0.1 6 
Field Cultivator 0.3 10 
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Implement Description Mixing Efficiency Tillage Depth (cm) 

Finishing Harrow 0.55 10 
Flex-Tine Harrow 0.2 2.5 
Float 0.1 6 
Furrow Diker 0.7 10 
Furrow-Out Cultivator 0.75 2.5 
Harrow (Tines) 0.2 2.5 
Hipper 0.5 10 
Land Plane-Leveler 0.5 7.5 
Landall, Do-All 0.3 15 
Laser Planer 0.3 15 
Levee-Plow-Disc 0.75 2.5 
Leveler 0.5 2.5 
Lister (Middle-Buster) 0.15 4 
Marker (Cultivator) 0.45 10 
Middle Buster 0.7 10 
Moldboard Plow Reg 0.95 15 
Multi-Weeder 0.3 2.5 
Offset Disk-Heavy Duty 0.7 10 
Offset Disk-Light Duty 0.55 10 
One-Way (Disk Tiller) 0.6 10 
Packer 0.35 4 
Paraplow 0.15 35 
Power Mulcher 0.7 5 
Powered Spike Tooth Harrow 0.4 7.5 
Rice Roller 0.1 5 
Ripper 0.25 35 
Rod Weeder 0.3 2.5 
Roller Groover 0.25 6 
Roller Harrow 0.4 6 
Roller Packer 0.05 4 
Roller Packer Flat Roller 0.35 4 
Rolling Cultivator 0.5 2.5 
Rotary Hoe 0.1 0.5 
Roterra 0.8 0.5 
Roto-Tiller 0.8 0.5 
Rotovator-Bedder 0.8 10 
Row Conditioner 0.5 2.5 
Row Cultivator 0.25 2.5 
Rowbuck 0.7 10 
Rubber-Wheel Weed Puller 0.35 0.5 
Sand-Fighter 0.7 10 
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Implement Description Mixing Efficiency Tillage Depth (cm) 

Seedbed Roller 0.7 10 
Single Disk 0.45 10 
Soil Finisher 0.55 7.5 
Spike Tooth Harrow 0.25 2.5 
Springtooth Harrow 0.35 2.5 
Stubble-Mulch Plow 0.15 7.5 
Subsoil Chisel Plow 0.45 35 
Subsoiler-Bedder Hip-Rip 0.7 35 
Tandem Disk Plow 0.55 7.5 
Tandem Disk Reg 0.6 7.5 
Triple K 0.4 10 
V-Ripper 0.25 35 

Source: Arnold et al., 2012. 

Box 3-6. Examples of Tillage Intensity Estimation 
Tillage intensity is estimated using equation 3-13 and the information in table 3-14. 
For example, a single tillage event with a duck cultivator, which has a mixing efficiency of 0.55 to 
a depth of 10 centimeters, apply the equation as follows: 

𝑇𝑇𝑏𝑏𝑙𝑙𝑙𝑙𝑏𝑏𝑇𝑇𝑇𝑇 𝐻𝐻𝑙𝑙𝑃𝑃𝑇𝑇𝑙𝑙𝑏𝑏𝑏𝑏𝑃𝑃𝐼𝐼 = (0.55 × 10) ÷ 30 = 0.183 

A result of 0.18 is classified as a reduced tillage system with an intensity ranking of G 
(table 3-14). 
Here is a second example based on two cultivation events in the planting period of the year. The 
first cultivation event is a tandem disk plow with a mixing efficiency of 0.55 to a depth of 7.5 
centimeters; the second is a row conditioner with a mixing efficiency of 0.5 to a depth of 2.5 
centimeters. 

𝑇𝑇𝑏𝑏𝑙𝑙𝑙𝑙𝑏𝑏𝑇𝑇𝑇𝑇 𝐻𝐻𝑙𝑙𝑃𝑃𝑇𝑇𝑙𝑙𝑏𝑏𝑏𝑏𝑃𝑃𝐼𝐼 = {[0.5 × 2.5] + [0.55 × (7.5 −  (0.5 × 2.5))]} ÷ 30 = 0.156 

This is classified as a reduced tillage practice with an intensity ranking of F. Note that T1 and T2 
are calculated within the square brackets. 

For the Tier 3 method, the long-term history of site management is used to simulate initial SOC 
stocks for the crop or grazing system. To estimate the initial values, the entity will need to choose 
the most likely management for the land parcel over the previous 30 years prior to the reporting 
period. The entity may provide more specific information about the management of the parcel if 
available. The entity must also provide the previous land use and year of conversion if a land-use 
change occurred during the past three decades. Historical data for activity from more than three 
decades in the past will be represented based on national agricultural statistics using enterprise 
budgets and census data for various regions in the country. However, an entity can also provide the 
history prior to the last three decades if it is known. 

Grazing method and timing are important for determining which parcels are grazed at different 
times of the year and the intensity of the grazing. Grazing is scheduled on a monthly basis to 
capture effects on forage production and the amount of manure C and N excreted directly onto land 
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by livestock and not collected or managed (de Klein et al., 2006), referred to as 
Pasture/Range/Paddock (PRP) manure. Animal type influences manure C and N content. The 
amount of PRP manure nitrogen is estimated with the livestock methods (see section 4.5), and it is 
assumed that half of nitrogen is in urine and the other half in solids. The carbon content of the PRP 
manure is calculated based on carbon to nitrogen ratios of the manure, which can be estimated with 
the values in table 3-16. In addition, the lignin content of the manure is also needed because the 
amount of lignin influences the decomposition of the manure and incorporation into soil organic C. 
The lignin contents are provided in table 3-16. 

Managed manure and other types of organic matter may be added to soils as amendments. The 
entity will provide data on the carbon and nitrogen content of organic amendments as well as lignin 
contents. Table 3-16 below provides defaults in case the entity does not have this information. 

Table 3-16. Nitrogen and Carbon Fractions of Common Organic Fertilizers and Manure—
Midpoint and 95-Percent Confidence Interval in Parentheses (Percent by Weight) 

Organic Fertilizer N (%)a C (%) Lignin (%) 
Poultry manure 2.25 (1.5–3) 8.75 (7–10.5)b 5.1 (1.7–8.4)f 

Pig, horse, and cow manure 0.45 (0.3–0.6) 5.1 (3.4–6.8)c 10.1 (1.8–18.4)f 

Green manure 3.25 (1.5–5) 42 (40–45)d 14.4 (9.8–18.9)g 

Compost 1.25 (0.5–2) 16 (12–20)e 39 (7–70)h 
Sewage sludge/Biosolids 3 (1–5) 11.7 (3.9–19.5)b 2.8 (1.9–3.7)i 

The 95-percent confidence intervals are based on a triangle distribution that can be used to propagate error through the 
analysis and quantify uncertainty. The confidence intervals represent uncertainty for a national scale application of the 
method, and so there may be additional uncertainty with application of this method at the entity scale that is not 
quantified. 
Sources: 
a Hue, n.d. 
b USDA, 1992. 
c U.S. EPA, 2013. Weighted U.S. average carbon:nitrogen ratio for manure available for application. 
d Assumes dry matter is 42 percent carbon, with an uncertainty based on the authors’ expert opinion. 
e A1 Organics, n.d.  
f Meneses-Quelal et al., 2020. 
g Tripolskaja et al., 2014. 
h  Tuomela et al., 1999. The amounts are highly variable depending on the level of decomposition in the composting 

process, leading to large uncertainties. 
i  Rowell et al., 2001. 

For biochar amendments to mineral soils, the entity will need the following activity data for 
croplands or grazing lands to estimate SOCBC in equation 3-10: 

• Mass of biochar added to cropland soil
• Molar hydrogen to organic carbon ratio of the biochar
• Biochar feedstock type
• Biochar production technology (pyrolysis or gasification)

3.2.3.3 Ancillary Data 
Ancillary data for the mineral soil method include historical weather patterns and soil 
characteristics. Weather data may be based on national datasets such as the Parameter-Elevation 
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Regressions on Independent Slopes Model, or PRISM (PRISM Climate Group, 2018). Soil 
characteristics may also be based on national datasets such as the Soil Survey Geographic Database, 
or SSURGO (Soil Survey Staff, 2023). For the Tier 2 method, the weather and soil data are used to 
classify the climate and soil type for each land parcel based on IPCC classifications (Reddy et al., 
2019). The erosion model also requires ancillary data on topography (i.e., slope), length of the field 
and row orientation, crop canopy height, diversions, surface residue cover, and soil texture. 

No ancillary data are needed to estimate the SOC changes from biochar amendments and drainage 
of organic soils. 

3.2.3.4 Limitations and Uncertainty 

Mineral Soils 

Tier 3 Method: Use the implicit model-based method to estimate uncertainty for mineral soil C 
based on the Tier 3 method (see chapter 8). Uncertainty is associated with the DayCent ecosystem 
model due to the process-based model structure and parameters. Uncertainty is quantified with an 
empirically based approach, as used in the U.S. National GHG Inventory (Ogle et al., 2007; U.S. EPA, 
2020). The method combines modeling and measurements to estimate SOC stock changes for 
entity-scale reporting (Conant et al., 2011). To calculate model uncertainty, entities may utilize 
values from a national soil monitoring network as described in Spencer et al. (2011), or from 
agricultural experiments (see U.S. EPA, 2020, for examples associated with the DayCent ecosystem 
model). 

Uncertainty is assumed to be minor for the management activity data provided by the entity, and 
therefore the values are assumed to be certain. Uncertainties associated with model structure and 
parameters are quantified using an empirical method, as discussed above. The empirical method is 
based on a linear mixed-effect model that is given in equation 3-14, along with the covariance 
matrix for the fixed effects.13 This model is applied M number of times to produce replicates of SOC 
stocks that can be used to determine the median and 95-percent prediction interval. Note that the 
same set of random draws, i.e., M random draws, for fixed effects and the random effects for 
region14 and site are used in the calculation of SOC stocks in each year of the time series for a land 
parcel. In contrast, the M replicates of the residual error are redrawn in each year of the time series 
for a land parcel.15 See chapter 8 for more information about how to propagate uncertainty using 
the implicit model-based method. 

13 The empirical model may be revised if the structure and/or parameterization of the DayCent ecosystem 
model is modified for the U.S. National GHG inventory to ensure that entity-scale reporting is consistent with 
national inventory methods. 
14 The region effect is based on Conservation Effects Assessment Project (CEAP) regions. 
15 The random effects for region and site within region will cancel when subtracting the stocks from 2 years 
for an individual land parcel, but the residual error will not cancel for the land parcel. The regions are based 
on the classification of agroecological regions in the Conservation Effects Assessment Project 
(https://www.nrcs.usda.gov/ceap). 

https://www.nrcs.usda.gov/ceap
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Equation 3-14: Empirical Uncertainty Model for Quantifying Uncertainty in the Tier 3 
Method for Mineral Soils 

𝑆𝑆𝑂𝑂𝐶𝐶 = exp {3.4916 + (0.581 × ln 𝑆𝑆𝑂𝑂𝐶𝐶𝐷𝐷𝑏𝑏𝐷𝐷𝐶𝐶𝑝𝑝𝑛𝑛𝑡𝑡) + 𝑏𝑏(𝑚𝑚)}  ÷ 100  

Where: 
SOC = soil organic carbon stock at the beginning (SOCt-1) or end (SOCt) of the ear 

(metric tons C/ha) 
ln 𝑆𝑆𝑂𝑂𝐶𝐶𝐷𝐷𝑏𝑏𝐷𝐷𝐶𝐶𝑝𝑝𝑛𝑛𝑡𝑡  = natural log of the predicted soil organic C stock from the DayCent 

Ecosystem Model (g C/ m2) 
𝑏𝑏(𝑚𝑚) = sum of random effects associated with region and site within region, in 

addition to residual error from the linear mixed effect model. 
The random effects and residual error are drawn from a normal 
distribution with a mean of 0 and the following standard deviations, 
region = 0.1858, site within region = 0.3588, and residual error = 0.1401. 

100 = conversion from grams C/m2 to metric tons C/ha 

The implicit model-based method also requires the following covariance matrix: 

Intercept 𝐥𝐥𝐥𝐥 𝑺𝑺𝑺𝑺𝑺𝑺𝑫𝑫𝑫𝑫𝑫𝑫𝑺𝑺𝑫𝑫𝑫𝑫𝑫𝑫 

Intercept 0.057361 -0.00621 
ln 𝑆𝑆𝑂𝑂𝐶𝐶𝐷𝐷𝑏𝑏𝐷𝐷𝐶𝐶𝑝𝑝𝑛𝑛𝑡𝑡 -0.00621 0.000736 

To reduce uncertainty, annual changes can be aggregated across land parcels by summing SOC 
stock changes within iterations in the Monte Carlo analysis across parcels (and entities), and then 
extracting the median and constructing a 95-percent prediction interval. (see box 8-2 in chapter 8). 
A similar process can also be used to aggregate annual estimates of SOC stock changes to produce 
results for multiple years (e.g., change over 5 or 10 years). Uncertainties are larger at finer spatial 
and temporal scales due to random effects and residual error that is reduced as the calculations 
incorporate SOC stock changes from more land parcels and/or years. Aggregation is a way to 
manage uncertainty and limit risk associated with programs that include the sequestration of 
carbon in agricultural soils as a mitigation pathway. See Ogle et al. (2010) for uncertainty at 
different scales of aggregation in which uncertainties can be over 100 percent at the entity scale, 
but significantly reduced with aggregation of farms and ranches to larger spatial scales and 
aggregating annual estimates to 5 or more years.  

There are several additional uncertainties in the Tier 3 method, including no assessment of the 
effect of land use and management in subsurface layers of the soil profile (below 30 centimeters), 
no assessment of the transport and deposition of eroded carbon, and limited data to assess 
uncertainty in the parameters and structure of DayCent using the empirically based method. These 
limitations may lead to inaccurate estimates of the management effects on SOC stock changes and 
may be improved in the future with additional research and development. 

Tier 2 method: Use the explicit model-based method to estimate uncertainty for the Tier 2 method 
(see chapter 8). Uncertainty is assumed to be minor for the management activity data provided by 
the entity, and therefore the values are assumed to be certain. Uncertainties in stock change factors 
are provided in table 3-9 and table 3-10 of section 3.2.3.1, and are propagated through the 
calculations using a Monte Carlo simulation. See chapter 8 for more information about the explicit 
model-based method.  
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Additional uncertainty in the Tier 2 method for mineral soils is due to the lack of specificity in local 
conditions for land parcels in croplands and grazing lands. This method was developed for national 
inventories (Ogle et al., 2003), so it does not address the finer-scale drivers of SOC stock changes on 
individual farms. There is also additional uncertainty in the estimation of annual changes given that 
this method represents effects over 20 years rather than on an annual basis. Consequently, the 
resulting estimates of SOC stock changes will be more accurate if results are aggregated across 
hundreds of farms and across a 20-year time series. 

Biochar C – Tier 2 Method: Use the explicit model-based method to estimate uncertainty for the 
biochar C method (see chapter 8). Uncertainty is assumed to be minor for the management activity 
data provided by the entity, and therefore the values are assumed to be certain. Uncertainties in the 
parameters are provided in section 3.2.3.1, and are propagated through the calculations using a 
Monte Carlo simulation. See chapter 8 for more information about the explicit model-based method. 

The Tier 2 method for biochar amendments is a practice-based approach and does not lead to a 
fully integrated calculation of SOC stock changes for mineral soils. The main consequence is that the 
method may not capture the priming of other soil organic matter. Further research is needed to 
develop a method that does a fully integrated estimation of biochar and other soil organic matter.  

Organic Soils 

Use the explicit model-based method to estimate uncertainty for C stock losses from the drainage of 
organic soils (see chapter 8). Uncertainty is assumed to be minor for the management activity data 
provided by the entity, and therefore the values are assumed to be certain. Uncertainty in the 
emission factor is provided in table 3-13 of section 3.2.3.1, and is propagated through the 
calculations using a Monte Carlo simulation. See chapter 8 for more information about the explicit 
model-based method. 

The method for estimation of SOC stock changes for organic soils has an uncertainty associated 
with emission factors, like the other methods in this section. However, it is limited when estimating 
the effect of mitigation measures such as water table management. Emission factors are set for each 
climate region and there are insufficient data to derive scaling factors to adjust the emission factors. 
Only complete restoration of a wetland with no further drainage can be addressed with the method 
for mitigation of CO2 emissions (i.e., it assumes no further emissions of CO2).  

Limitations 

Although there is uncertainty in the Tier 2 and 3 methods for mineral and organic soils, there are no 
known limitations in applying the methods to all croplands and grazing lands in the United States, 
except for the biochar C method as discussed below. However, it is important to apply the correct 
method to the land parcel following the directions given in figure 3-3. 

The limitation in applying the biochar C method to U.S. cropland and grazing lands is that it is only 
developed for mineral soils. Further research is needed to expand this method for the estimation of 
biochar amendments in organic soils (i.e., Histosols). 

While there is considerable evidence and mechanistic understanding of the influence of land use 
and management on SOC, less is known about the effect on soil inorganic carbon. Consequently, this 
set of methods is limited to SOC only. Methods may be added in the future as more studies are 
conducted and methods are developed to estimate the influence of land use and management on 
soil inorganic carbon stocks. 
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3.2.4 Soil Nitrous Oxide 

Box 3-7. Method for Estimating Soil Direct N2O Emissions 
 Use the DayCent process-based model for major field crops and grazing lands occurring on

most mineral soils. The model simulates the impacts of various management practices (e.g.,
irrigation, crop and forage type, fertilizer type, and rate) on plant-soil system nitrogen cycling
and the processes responsible for N2O emissions.

 For some crops (e.g., vegetable crops such as lettuce and carrots) and mineral soils (e.g.,
gravelly), as well as drained organic soils, use the IPCC Tier 1 method (Hergoualc’h et al.,
2019) to estimate emissions with scaling factors to address the influence of specific
management practices.

Box 3-8. Method for Estimating Soil Indirect N2O Emissions 
 Use the IPCC Tier 1 method for indirect soil N2O emissions (Hergoualc’h et al., 2019).
 Use IPCC defaults for estimating the proportion of nitrogen that is subject to leaching, runoff,

and volatilization. Inland parcels where the precipitation plus irrigation water input is less
than 80 percent of the potential evapotranspiration, nitrogen leaching, and runoff are
considered negligible and no indirect N2O emissions are estimated from leaching and runoff.

3.2.4.1 Description of Method 
N2O is emitted from cropland and grazing land soils both directly and indirectly. Direct emissions 
are fluxes from cropland or grazing lands where there are nitrogen additions such as mineral 
fertilization, or management practices that influence nitrogen mineralization from soil organic 
matter. Indirect emissions occur when reactive nitrogen is volatilized as NH3 or NOx or transported 
via surface runoff or leaching in soluble forms from cropland or grazing lands where nitrogen 
additions are occurring, or management practices are influencing nitrogen mineralization from soil 
organic matter. See appendix 3A.3 for the rationale for choosing the following method to estimate 
emissions. 

Direct Emissions 

Direct soil N2O emissions are estimated using either the DayCent process-based model (Tier 3 
approach) or a modified IPCC Tier 1 method. Emissions from both methods are scaled for specific 
management practices that influence N2O emissions that are not addressed in the Tier 1 or 3 
models. figure 3-3 provides a decision tree for choosing the method that is appropriate for the land 
parcel. In some cases, both methods may need to be used—e.g., if the land parcel has both organic 
and mineral soils.  
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a Classified as soils whose volume is more than 35 percent gravel, cobbles, or shale. 
b If other crops are grown in rotation with this set of crops, the IPCC Tier 1 method should be used to estimate 

emissions. Other crops may be included with Tier 3 method if they are included in the Tier 3 method for future U.S. 
National GHG Inventories (published annually; most recent version is U.S. EPA, 2020). In addition, USDA may review 
and potentially approve crops for inclusion in the Tier 3 method if crop production can be simulated with reasonable 
accuracy using the DayCent model. 

Figure 3-3. Decision Tree to Choose the Method for Estimating N2O Emissions From Mineral 
and Organic Soils (i.e., Histosols) for the Land Parcel in Equation 3-7 

Tier 3 method: Use the DayCent ecosystem model to estimate N2O emissions (and also soil C stock 
changes for mineral soils; see section 3.2.3.1), which is consistent with the approach used for the 
U.S. National GHG Inventory (U.S. EPA, 2020). DayCent estimates emissions based on crop type, soil 
type, land management, and weather. This approach involves a three-step process in which the first 
two steps produce an estimate of the initial SOC stocks before the reporting period:  

• Run the model to a steady-state condition16 (e.g., equilibrium) with native vegetation,17

historical climate data,18 and the soil physical attributes for the land parcel.
• Simulate a period from the mid-1800s to the most recent year before the first year in the

reporting period. The entity can choose the practices that best match the land management
for the parcel. In addition, the entity may enter more specific information about the

16 The goal of the steady-state simulation is to set the state-variables (e.g., amount of C in the soil organic 
matter pools) in a range that is consistent with environmental conditions at the site. 
17 Broad vegetation types representing the dominant mixture of C3 and C4 grasses in grasslands and dominant 
forest types such as broadleaf deciduous or evergreen needleleaf. 
18 Historical data will depend on the time series, and PRISM has data from 1980 to the present. See section 
3.2.3.3. 
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management of the parcel during the last 30 years of the time series if available, including 
specific crops planted, tillage practices, fertilization practices, irrigation, and other 
management activity. Otherwise, the entity can choose from the general management 
options based on common regional practices (see section 3.2.3.2 for more information). The 
simulated organic carbon stock at the end of the simulation provides the initial baseline. 

• Estimate N2O emissions during the reporting period based on the management activity for 
the land parcel and the initial SOC stocks. The management activities for the land parcel, 
should include crops planted, tillage practices, fertilization practices, irrigation, and other 
management activity data (see section 3.2.3.2 for more information). Simulations are 
conducted and outputs for annual N2O emissions are compiled. Apply the implicit model-
based method to estimate uncertainty in the prediction of direct N2O emissions from the 
DayCent ecosystem model as discussed in section 3.2.4.4.

Practice-based emission scaling factors, ranging from 0 to 1, are used to adjust the emissions if the 
land parcel is managed with biochar addition to soils. The biochar19 scaling factor (Sbc) applies only 
for the first year following application at a minimum rate of 10 Mg/ha. The scaling factor is given a 
value of 0 if there are repeated applications to the same parcel of land in subsequent years, even if 
the repeated applications do not occur every year (i.e., no additional scaling). Estimate annual 
direct soil N2O emissions based on the DayCent model results and practice-based scaling factor for 
biochar, using equation 3-15. 

Equation 3-15: Tier 3 Annual Direct Soil N2O Emissions From Mineral Soils 

N2O𝑑𝑑𝑏𝑏𝑚𝑚𝑝𝑝𝑏𝑏𝑡𝑡 = 𝐸𝐸𝐶𝐶𝐷𝐷𝑏𝑏𝐷𝐷𝐶𝐶𝑝𝑝𝑛𝑛𝑡𝑡 × (1 + 𝑆𝑆𝑏𝑏𝑏𝑏)  ×  𝐴𝐴 × N2O𝑀𝑀𝑊𝑊 × N2O𝑀𝑀𝑊𝑊𝑃𝑃

Where:
N2Odirect = annual soil N2O emissions for the land parcel (metric tons CO2-eq)  
ERDayCent  = annual soil N2O emissions for the land parcel based on DayCent model 

simulation after applying the implicit model-based uncertainty method (metric 
tons N2O-N/ha) 

Sbc = scaling factor for biochar addition, 0 with no addition (dimensionless) 
A = area of a parcel of land (ha) 
N2OMW  = ratio of molecular weights of N2O to N2O-N, 44/28 
N2OGWP = global warming potential for N2O (metric tons CO2-eq/metric tons N2O) 

The scaling factor for biochar additions is provided in table 3-17. 

Tier 1 method (adapted): This method has been adapted from the IPCC Tier 1 method 
(Hergoualc’h et al., 2019) with scaling factors to address specific management factors, which are 
not included in the default Tier 1 method. The IPCC default emission factors vary from 0.2 to 1.6 
percent based on nitrogen input type and climate. Multiply these by the appropriate value of 
nitrogen input to estimate emissions. Use practice-based emission scaling factors ranging from 0 to 
1 (see table 3-17) to adjust the emissions for specific management practices associated with 
fertilizer type, tillage practice, and biochar addition. Specifically, use the scaling factors for fertilizer 
type to adjust the emissions for slow-release fertilizers (Ssr) and nitrification inhibitors (Sinh). Use 
the scaling factor for tillage (Still) to adjust the emissions on land parcels with no-till management. 
As with the Tier 3 method, a biochar scaling factor (Sbc) adjusts the emissions for the first year 

19 Biochars, as defined for these methods, have H:Corg ratios of < 0.7. See more discussion in section 3.2.3. 



Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems 

3-50 

following application at a minimum rate of 10 Mg/ha. In the case of repeated applications to the 
same parcel of land in subsequent years (even if the applications do not occur every year), set the 
biochar scaling factor (Sbc) to a value of 0.  

To address drainage of organic soils with this method, multiply the area of drained organic soils by 
an emission factor. Nitrogen inputs must also be addressed for organic soils, but there is also an 
additional effect on N2O emissions from drainage. Organic soils include Histosols and soils that have 
high organic matter content that developed under saturated, anaerobic conditions for at least part 
of the year, which includes Histels, Historthels, and Histoturbels. The method assumes that there is a 
significant organic horizon in the soil, so major inputs of nitrogen are from the oxidation of organic 
matter. If the organic horizon has decomposed and is no longer present in the parcel, the entity 
does not need to estimate additional emissions associated with the drainage of organic soils. 

Equation 3-16 estimates annual direct soil N2O emissions using the Tier 1 method with practice-
based scaling factors. 

Equation 3-16: Tier 1 Annual Soil N2O Emission Rate for Mineral and Organic Soils 

N2O𝐷𝐷𝑏𝑏𝑚𝑚𝑝𝑝𝑏𝑏𝑡𝑡 = (N2O𝐼𝐼𝑛𝑛𝑝𝑝𝐼𝐼𝑡𝑡 +  N2O𝑂𝑂𝑆𝑆) ×  𝑁𝑁2𝑂𝑂𝑀𝑀𝑊𝑊  ×  𝑁𝑁2𝑂𝑂𝑀𝑀𝑊𝑊𝑃𝑃  

Where: 
N2ODirect = annual direct soil N2O emissions for the land parcel (metric tons CO2-eq)  
N2O𝐼𝐼𝑛𝑛𝑝𝑝𝐼𝐼𝑡𝑡 = annual soil N2O emissions from nitrogen inputs to the land parcel (metric tons 

N2O-N) 
N2O𝑂𝑂𝑆𝑆 = annual soil N2O emissions from the drainage of organic soils (metric tons N2O-

N)  
N2OMW = ratio of molecular weights of N2O to N2O-N = 44/28 
N2OGWP = global warming potential for N2O (metric tons CO2-eq/metric tons N2O) 

𝑁𝑁2O𝐼𝐼𝑛𝑛𝑝𝑝𝐼𝐼𝑡𝑡 = {[𝐹𝐹𝑏𝑏𝑛𝑛 × 𝐸𝐸𝐹𝐹𝑏𝑏𝑛𝑛 × (1 + 𝑆𝑆𝑏𝑏𝑚𝑚) × (1 + 𝑆𝑆𝑏𝑏𝑛𝑛ℎ)] + [(𝐹𝐹𝑏𝑏𝑛𝑛 + 𝐹𝐹𝑏𝑏𝑚𝑚) × 𝐸𝐸𝐹𝐹𝑏𝑏𝑛𝑛]
+ (𝐹𝐹𝑝𝑝𝑚𝑚𝑝𝑝 × 𝐸𝐸𝐹𝐹𝑝𝑝𝑚𝑚𝑝𝑝)} ×  (1 + 𝑆𝑆𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏) × (1 + 𝑆𝑆𝑏𝑏𝑏𝑏) 

Where: 
N2O𝐼𝐼𝑛𝑛𝑝𝑝𝐼𝐼𝑡𝑡 = annual soil N2O emissions from nitrogen inputs to the land parcel (metric tons 

N2O-N) 
Fsn = synthetic fertilizer nitrogen inputs to the land parcel (metric tons N) 
EFsn = emission factor for synthetic nitrogen input to soils (metric tons N2O-N/metric 

tons N) 
Ssr = scaling factor for slow-release fertilizers, 0 where no effect (dimensionless) 
Sinh = scaling factor for nitrification inhibitors, 0 where no effect (dimensionless) 
Fon = organic fertilizer/manure nitrogen inputs to the land parcel (metric tons N)

Fcr = crop residue and forage renewal nitrogen inputs to the land parcel (metric tons 
N) 

EFon = emission factor for other nitrogen inputs, i.e., organic fertilizer/manure and 
crop/forage residue nitrogen input to soils (metric tons N2O-N/metric tons N) 
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Fprp = manure nitrogen deposited directly onto the land parcel (i.e., PRP) by livestock 
(metric tons N) 

EFprp = emission factor for manure deposited directly onto the land parcel (i.e., PRP) by 
the livestock (metric tons N2O-N/metric tons N) 

Still = scaling factor for no-tillage, 0 except for no-till (dimensionless) 
Sbc = scaling factor for biochar addition—mineral soils only, 0 with no addition or 

organic soils (dimensionless) 

N2O𝑂𝑂𝑆𝑆 = (𝐴𝐴𝑏𝑏𝑏𝑏 × 𝐸𝐸𝐹𝐹𝑏𝑏𝑏𝑏)/1000 

Where: 
N2O𝑂𝑂𝑆𝑆 = annual soil N2O emissions from the drainage of organic soils (metric tons N2O-

N) 
EFos = emission factor for drained organic soils in croplands and grazing lands 

(kg N2O-N/ha) 
Aos = area of land parcel with drained organic soils (ha) 

The emission and scaling factors for equation 3-15 and equation 3-16 are either defaults provided 
by IPCC (Drösler et al., 2013; Hergoualc’h et al., 2019) or management practice scaling factors from 
the published literature or analysis by the authors of this chapter. The factor values and 
uncertainties are provided in table 3-17.  

Table 3-17. IPCC Tier 1 Emission Factors and Practice-Based Scaling Factors for Nitrogen 
Management Practices With 95-Percent Confidence Intervals 

Emission Factor or 
Scaling Factor for 

Management Practice 
Conditions 

Factor 
(95-Percent 
Confidence 
Intervals) 

Distribution Source 

Emission factor for 
synthetic nitrogen input 
(EFsn) (metric tons N2O-
N/metric tons N) 

Semi-arid/arid 
climatea 

0.005 
(0.001 to 0.011) Triangle Hergoualc’h et al. 

(2019), i.e., IPCC 
Tier 1 factors Mesic/wet climatea 0.016 

(0.013 to 0.019) Triangle 

Slow-release fertilizer use 
scaling factor (Ssr) 
(dimensionless) 

Semi-arid/arid 
climatea 

-0.38
(-0.11 to -0.57) Normal See 3A.4 

Mesic/wet climatea -0.20
(-0.08 to -0.30) Normal See 3A.4 

Nitrification inhibitor use 
factor (Sinh) 
(dimensionless) 

Semi-arid/arid 
climatea 

-0.46
(-0.34 to -0.55) Normal See 3A.4 

Mesic/wet climatea -0.33
(-0.24 to -0.42) Normal See 3A.4 

Emission factor for other 
nitrogen inputs (organic 
fertilizer, manure and 
crop residue) (EFon) 
(metric tons N2O-
N/metric tons N) 

Semi-arid/arid 
climatea 

0.006 
(0.001 to 0.011) Triangle 

Hergoualc’h et al. 
(2019), i.e., IPCC 
Tier 1 factors Mesic/wet climatea 0.005 

(0.000 to 0.011) Triangle 
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Emission Factor or 
Scaling Factor for 

Management Practice 
Conditions 

Factor 
(95-Percent 
Confidence 
Intervals) 

Distribution Source 

Emission factor for 
manure nitrogen directly 
deposited on PRP (EFprp) 
(metric tons N2O-
N/metric tons N) 

Dairy 
and beef 
cattle, 
buffalo, 
poultry, 
and pigs 

Semi-
arid/arid 
climatea 

0.002 
(0.000 to 0.006) Triangle 

Hergoualc’h et al. 
(2019), i.e., IPCC 
Tier 1 factors 

Mesic/wet 
climatea 

0.006 
(0.000 to 0.026) Triangle 

Sheep and other 
livestock, all climates 

0.003 
(0.000 to 0.010) Triangle 

Emission factor for 
nitrogen inputs to flooded 
rice cultivation (EFsn and 
EFon)b (metric tons N2O-
N/metric tons N) 

Continuous flooding 0.003 
(0.000 to 0.010) 

Triangle 
Hergoualc’h et al. 
(2019), i.e., IPCC 
Tier 1 factors Single and multiple 

drainage 
0.005 

(0.000 to 0.006) 

Biochar scaling factor 
(Sbc) (dimensionless) 

First year application 
only 

-0.23
(-0.05 to -0.41) Normal See appendix 3A.4 

Tillage scaling factor (Still) 
(dimensionless) 

Semi-arid/arid 
climatea (< 10 years 
following no-till 
adoption) 

0.38 
(0.04 to 0.72) Normal 

van Kessel et al. 
(2012), Six et al. 
(2004) 

Semi-arid/arid 
climatea (≥ 10 years 
following no-till 
adoption) 

-0.33
(-0.16 to -0.5) Normal 

van Kessel et al. 
(2012), Six et al. 
(2004) 

Mesic/wet climatea (< 
10 years following no-
till adoption) 

-0.015
(-0.16 to 0.16) Normal 

van Kessel et al. 
(2012), Six et al. 
(2004) 

Mesic/wet climatea (≥ 
10 years following no-
till adoption) 

-0.09
(-0.19 to -0.01) Normal 

van Kessel et al. 
(2012), Six et al. 
(2004) 

Emission factor for 
drained cropland soils 
(EFOS) (kg N2O-N/ha) 

Temperate 13 
(8.2 to 18) Triangle 

Drösler et al. 
(2013), i.e., IPCC 
Tier 1 factors 

Subtropical/tropical 5.0 
(2.3 to 7.7) Triangle 

Emission factor for drained 
grazing land soils (EFOS) (kg 
N2O-N/ha) 

Temperate, nutrient poor 4.3 
(1.9 to 6.8) Triangle 

Temperate, nutrient rich, 
deep drainage 

8.2 
(4.9 to 11) Triangle 

Temperate, nutrient rich, 
shallow drainage 

1.6 
(0.56 to 2.7) Triangle 

Subtropical/tropical 5.0 
(2.3 to 7.7) Triangle 

The confidence intervals represent uncertainty for a national scale application of the method, and so there may be 
additional uncertainty with application of this method at the entity scale that is not quantified.
a Wet/mesic climates occur in temperate and boreal regions where the ratio of mean annual precipitation to potential 

evapotranspiration is greater than 0.8 and all other climates are considered arid/semi-arid. Wet/mesic climates in 

Tillage scaling factor 
(Still) (dimensionless)

Drösler et al. 
(2013), i.e., IPCC 
Tier 1 factors

Emission factor for drained grazing land soils (EFOS) (kg N2O-N/ha)
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subtropical/tropical regions occur where the mean annual precipitation is greater than 1,000 mm and other climates 
are considered semi-arid or arid. 

b The EFsn and EFon for flooded rice cultivation differ from other crops due to the anaerobic conditions under which 
flooded rice is produced. 

The reporting entity provides the amount of synthetic fertilizer and other organic nitrogen inputs; 
use of no-till, biochar amendments, nitrification inhibitors in fertilizers, and slow-release fertilizers 
with polymer coatings; and the area of drained organic soils (see section 3.2.4.2 for a complete list 
of requirements). Estimate the amount of manure nitrogen deposited directly onto land parcels 
using methods in the livestock methods in chapter 4. Estimate crop residue nitrogen and forage 
renewal nitrogen inputs using equation 3-17. Note that crop residue nitrogen input is only 
estimated for herbaceous crops, and that forage nitrogen inputs are only estimated in years when 
the grazing land is cleared (with practices such as tillage or herbicides) and replanted with 
forages. 

Equation 3-17: Annual Amount of Crop and Forage Residue Nitrogen Input to the Soil 

𝐹𝐹𝑏𝑏𝑚𝑚 = 𝐶𝐶𝐶𝐶𝑁𝑁𝑏𝑏 + 𝐶𝐶𝐶𝐶𝑁𝑁𝑏𝑏  
Where: 

Fcr = residue nitrogen inputs to the land parcel from annual crops and litter/dead 
biomass produced during grazing land renewal (metric tons N) 

CRNa = aboveground crop and forage renewal residue inputs to the land parcel 
(metric tons N) 

CRNb = belowground crop and forage renewal residue inputs to the land parcel 
(metric tons N) 

𝐶𝐶𝐶𝐶𝑁𝑁𝑏𝑏 = 𝐶𝐶𝐵𝐵𝑏𝑏 × (1 + 𝐶𝐶) × 𝑁𝑁𝑏𝑏  

Where: 
CRNb = belowground crop and forage renewal residue inputs to the land parcel 

(metric tons N) 
CBa = aboveground crop and forage biomass in dry matter units (metric tons of dry 

matter) 
R = aboveground biomass to belowground biomass (root-to-shoot) ratio 

(metric tons belowground dry matter/metric tons aboveground dry matter) 
Nb = N content in the belowground residue (metric tons N/metric tons dry matter) 

𝐶𝐶𝐶𝐶𝑁𝑁𝑏𝑏 = [(𝐶𝐶𝐵𝐵𝑏𝑏 − (𝑌𝑌 × 𝐴𝐴)) × 𝑁𝑁𝑏𝑏] × (1 − 𝐶𝐶𝑏𝑏) 

Where: 
CRNa = aboveground crop and forage renewal residue inputs to the land parcel 

(metric tons N) 
CBa = aboveground crop and forage biomass in dry matter units (metric tons of dry 

matter) 
Y = fresh weight of crop harvest yield or peak grazing land forage amount (metric 

tons yield/ha) 
A = area of a parcel of land (ha) 
Na = N content in the aboveground residue (metric tons N/metric tons dry matter) 
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Rm = proportion of crop or forage residue removed by burning, grazing, or 
harvesting residues (metric tons dry matter removed/metric tons dry matter 
produced) 

𝐶𝐶𝐵𝐵𝑏𝑏 = (𝑌𝑌 ÷ 𝐻𝐻𝐻𝐻) × 𝐴𝐴 × 𝐷𝐷𝐷𝐷 

Where: 
CBa = aboveground crop and forage biomass in dry matter units (metric tons of dry 

matter) 
Y = fresh weight of crop harvest yield or peak grazing land forage amount (metric 

tons yield/ha) 
HI = harvest index: ratio of crop yield or forage removal to total aboveground 

biomass (metric tons biomass/metric tons yield) 
A = area of a parcel of land (ha) 
DM = dry matter content of harvested crop biomass or forage 

(metric tons dry matter/metric tons biomass) 

Crop yield data and the grazing land forage amount should be provided by the entity. The amount of 
forage should be approximated based on the peak forage amount using methods in section 3.2.1.2. 
The forage renewal nitrogen inputs (Fcr) should be 0 for land parcels with grazing lands that are not 
renewed during the reporting year (i.e., cleared with practices such as tillage or herbicides, then 
replanted with forages). The harvest index, dry matter contents, and root-to-shoot ratios can be 
found in table 3-3. The nitrogen content of the crop and forage residues is provided in table 3-18. 

Table 3-18. Crop and Forage Nitrogen Content With 95-Percent Confidence Intervals in 
Parentheses 

Crop 
Nitrogen Content of Aboveground 

Residues (Metric Tons N/Metric Tons 
Dry Matter) 

Nitrogen Content of Belowground 
Residues (Metric Tons N/Metric 

Tons Dry Matter) 

Barley 0.007 (±0.005) 0.014 (±0.011) 
Beans 0.008 (±0.006) 0.008 (±0.006) 
Corn grain/silage 0.006 (±0.005) 0.007 (±0.005) 
Cotton 0.012 (±0.009) 0.007 (±0.005) 
Millet 0.006 (±0.005) 0.009 (±0.007) 
Oats 0.007 (±0.005) 0.008 (±0.006) 
Peanuts 0.016 (±0.012) 0.014 (±0.011) 
Potatoes 0.019 (±0.014) 0.014 (±0.011) 
Rice 0.007 (±0.005) 0.009 (±0.007) 
Rye 0.005 (±0.004) 0.011 (±0.008) 
Sorghum grain/silage 0.007 (±0.005) 0.006 (±0.005) 
Soybean 0.008 (±0.006) 0.008 (±0.006) 
Sugar beets 0.019 (±0.014) 0.014 (±0.011) 
Sugarcane 0.007 (±0.005) 0.005 (±0.004) 
Sunflower 0.006 (±0.005) 0.009 (±0.007) 
Tobacco 0.008 (±0.006) 0.018 (±0.014) 
Spring wheat 0.006 (±0.005) 0.009 (±0.007) 
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Crop 
Nitrogen Content of Aboveground 

Residues (Metric Tons N/Metric Tons 
Dry Matter) 

Nitrogen Content of Belowground 
Residues (Metric Tons N/Metric 

Tons Dry Matter) 

Winter wheat 0.006 (±0.005) 0.009 (±0.007) 
Other grain crops 0.006 (±0.005) 0.009 (±0.007) 
Other crops 0.006 (±0.005) 0.009 (±0.007) 
Alfalfa hay 0.027 (±0.020) 0.019 (±0.014) 
Nonlegume hay 0.015 (±0.011) 0.012 (±0.009) 

Nitrogen-fixing forages 0.027 (±0.020) 0.022 (±0.017) 
Perennial grass forages 0.015 (±0.011) 0.012 (±0.009) 
Other forages (i.e., not 
perennial grass or 
nitrogen-fixing) 

0.015 (±0.011) 0.012 (±0.009) 

Grass and nitrogen-
fixing (e.g., clover) 
forage mixtures 

0.025 (±0.019) 0.016 (±0.012) 

Sources: Hergoualc’h et al., 2019, i.e., IPCC Tier 1 factors, with additional values from U.S. EPA, 2020. 
The 95-percent confidence intervals are based on a normal distribution that can be used to quantify uncertainty. The 
confidence intervals represent uncertainty for a national scale application of the method, and so there may be additional 
uncertainty with application of this method at the entity scale that is not quantified. 
Note: The Tier 1 method does not include crop residue N input from woody crops. 

Indirect Emissions 

The method to estimate indirect N2O emissions for mineral soils has been adopted from the 
approach developed by IPCC (Hergoualc’h et al., 2019). Using equation 3-18, estimate the total 
indirect N2O emissions associated with volatilization, leaching, and runoff from a land parcel. 

Equation 3-18: Total Annual Indirect Soil N2O Emissions from Mineral Soils 

N2O𝑏𝑏𝑛𝑛𝑑𝑑𝑏𝑏𝑚𝑚𝑝𝑝𝑏𝑏𝑡𝑡 = (N2O𝑎𝑎𝑏𝑏𝑏𝑏 + N2O𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏ℎ) × N2O𝑀𝑀𝑊𝑊 × N2O𝑀𝑀𝑊𝑊𝑃𝑃  

Where: 
N2Oindirect = annual indirect soil N2O emissions (metric tons CO2-eq) 
N2Ovol  = N2O emitted by the ecosystem receiving volatilized nitrogen 

(metric tons N2O-N) 
N2Oleach  = N2O emitted by ecosystem receiving leached and runoff nitrogen 

(metric tons N2O-N) 
N2OMW  = ratio of molecular weights of N2O to N2O-N = 44/28 

(metric tons N2O/metric tons N2O-N) 
N2OGWP  = global warming potential for N2O (metric tons CO2-eq/metric tons N2O) 

Use equation 3-19 to estimate the indirect emissions associated with the volatilization of nitrogen-
based gases from a land parcel. 
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Equation 3-19: Annual Indirect Soil N2O Emissions From Mineral Soils—Volatilization 

N2O𝑎𝑎𝑏𝑏𝑏𝑏 = {(𝐹𝐹𝑆𝑆𝑆𝑆 × 𝐹𝐹𝐶𝐶𝑆𝑆𝑆𝑆) + [(𝐹𝐹𝑂𝑂𝑆𝑆 + 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃) × 𝐹𝐹𝐶𝐶𝑂𝑂𝑆𝑆]} × 𝐸𝐸𝐹𝐹𝑎𝑎𝑏𝑏𝑏𝑏  

Where: 
N2Ovol = annual indirect soil N2O emitted by the ecosystem receiving volatilized 

nitrogen (metric tons N2O-N) 
FSN = synthetic nitrogen fertilizer applied (metric tons N) 
FRSN = fraction of synthetic nitrogen (NSN) that volatilizes as NH3 and NOx [metric 

tons N/metric tons nitrogen in synthetic fertilizer] 
FON = nitrogen fertilizer applied of organic origin including manure, sewage sludge, 

compost, and other organic amendments (metric tons N) 
FPRP = manure nitrogen deposited directly onto the land parcel (i.e., PRP) by livestock 

(metric tons N) 
FRON = fraction or proportion of FON that volatilizes as NH3 and NOx 

(metric tons N/metric tons nitrogen in organic fertilizer) 
EFvol = emission factor for volatilized nitrogen or proportion of nitrogen volatilized as 

NH3 and NOx that is transformed to N2O in receiving ecosystem 
(metric tons N2O-N/metric tons N) 

Use equation 3-20 to estimate the indirect emissions associated with leaching and runoff of organic 
and inorganic forms of nitrogen from a land parcel. 

Equation 3-20: Tier 1 Annual Indirect Soil N2O Emissions From Mineral Soils—Leaching 
and Runoff 

N2O𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏ℎ = (𝑁𝑁𝑏𝑏 × 𝐹𝐹𝐶𝐶𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏ℎ) × 𝐸𝐸𝐹𝐹𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏ℎ  

Where: 
N2Oleach = annual indirect soil N2O emitted by ecosystem receiving leached and runoff 

nitrogen (metric tons N2O-N) 
Ni = nitrogen inputs, including mineral fertilizer, organic amendments, PRP manure 

nitrogen, and residues (metric tons N) 
FRleach = fraction of nitrogen inputs (Ni) that is leached or runs off the land parcel 

(metric tons N/metric tons N in nitrogen inputs) 
EFleach = proportion of leached and runoff nitrogen that is transformed to N2O in the 

receiving ecosystem (metric tons N2O-N/metric tons N) 

Emission factors and fractions for volatilization (Nvolatilized), leaching, and runoff (Nleached/runoff) are 
provided in table 3-19. The fraction of nitrogen that is leached from a profile will vary depending on 
the level of precipitation and irrigation water applied to the field, among other properties like soil 
texture, pH and temperature. Inland parcels (i.e., fields) where the precipitation and irrigation 
water inputs are less than 80 percent of the potential evapotranspiration, leaching, and runoff are 
considered negligible and no indirect N2O emissions should be estimated (U.S. EPA, 2020). IPCC 
default fractions are used for EFleach and FRleach where no cover crops are present. Where winter 
cover crops precede the cash crop, FRleach is further adjusted to account for cover crop effects on 
nitrate leaching. Note that CO2 emissions from urea are addressed separately in section 3.2.9. 
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Table 3-19. Tier 1 Emission Factors for Estimating Indirect Soil N2O Emissions With 95-
Percent Confidence Intervals 

Emission Factors Condition 

Factor 
(95-Percent 
Confidence 
Intervals) 

Units Distribution Source 

Fraction of synthetic 
nitrogen (NSN) that 
volatilizes as NH3 and NOx 

Urea fertilizer 0.15 
(0.03 to 0.43) 

Metric tons 
Nvolatilized/ 
metric ton FSN 

Triangle 

Hergoualc’h 
et al. (2019), 
i.e., IPCC Tier
1 factors 

Ammonium-
based fertilizer 

0.08 
(0.02 to 0.3) 

Metric tons 
Nvolatilized/ 
metric ton FSN 

Triangle 

Nitrate-based 
fertilizer 

0.01 
(0.00 to 0.02) 

Metric tons 
Nvolatilized/ 
metric ton FSN 

Triangle 

Ammonium-
nitrate-based 
fertilizer 

0.05 
(0.00 to 0.2) 

Metric tons 
Nvolatilized/ 
metric ton FSN 

Triangle 

Fraction of nitrogen in 
organic amendments 
(excluding crop residues) 
and PRP nitrogen (FON,PRP) 
that volatilizes as NH3 and 
NOx 

n/a 0.21 
(0.00 to 0.31) 

Metric tons 
Nvolatilized/ 
metric ton FON,

FPRP 

Triangle 

Indirect soil N2O emission 
factor for volatilized 
nitrogen losses 

Wet/mesic 
climatea 

0.014 
(0.011 to 0.017) 

Metric tons 
N2O-N/metric 
ton Nvolatilized 

Triangle 

Semi-arid/arid 
climatea 

0.005 
(0.000 to 0.011) 

Metric tons 
N2O-N/metric 
ton Nvolatilized 

Triangle 

Fraction of nitrogen inputs 
(mineral fertilizer 
nitrogen, organic nitrogen, 
crop residue nitrogen, and 
PRP nitrogen) to the site 
that leach or run off in 
water flows 

Without cover 
crops 

0.24 
(0.01 to 0.73) 

Metric tons 
Nleached/runoff/ 
metric ton Ni 

Triangle 

With 
leguminous 
cover crop 

0.18 
(0.14 to 0.26) 

Metric tons 
Nleached/runoff/ 
metric ton Ni 

Triangle 

With non-
leguminous 
cover crop 

0.09 
(0.06 to 0.15) 

Metric tons 
Nleached/runoff/ 
metric ton Ni 

Triangle 

Indirect soil N2O emission 
factor for leached and 
runoff losses of nitrogen 

n/a 0.011 
(0.000 to 0.02) 

Metric tons 
N2O-N/ 
metric ton 
Nleached/runoff 

Triangle 

Probability density functions have a triangular distribution that can be used to propagate error through the analysis and 
quantify uncertainty. The confidence intervals represent uncertainty for a national scale application of the method, and so 
there may be additional uncertainty with application of this method at the entity scale that is not quantified. 
a Wet/mesic climates occur in temperate regions where the ratio of mean annual precipitation to potential 

evapotranspiration ratio is greater than 0.8 and all other climates are considered arid/semi-arid. Wet/mesic climates 
in subtropical/tropical regions occur where the mean annual precipitation is greater than 1,000 mm and other 
climates are considered semi-arid or arid. 

Fraction of synthetic 
nitrogen (NSN) that 
volatilizes as NH3 and NOx
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Box 3-9. Method for Projecting Soil N2O Emissions 
For estimation of future direct and indirect soil N2O emissions, the methods described in this section 
can be applied using the DayCent model and Tier 1 approach in combination with expected 
management practices. For DayCent simulations, the previous 10 years of weather will be repeated 
for the projections. The equations should be applied in a business-as-usual scenario and the 
mitigation scenario: the difference in emissions between the two scenarios is an estimate of the 
technical mitigation potential for the land parcel. Projections should only be used for planning; for 
reporting, emissions from the land parcel should be estimated with the actual weather and 
management practices. Other considerations—e.g., cost for adopting a new practice, issues 
surrounding permanence and leakage—are not addressed with these methods but may also 
influence the amount of GHG mitigation. 

3.2.4.2 Activity Data 

Overview of Requirements 

Activity data requirements are provided by the reporting entity. Requirements include information 
on soil and nitrogen management practices that influence N2O emissions.  

Croplands 

Some activity data requirements for croplands are common to both the Tier 3 and Tier 1 methods: 

• Area of the land parcel (i.e., field)
• Crop types and rotation sequence
• Residue management, including proportion harvested, burned, grazed, or left in the field
• Mineral fertilizer type (including enhanced-efficiency fertilizers with nitrification inhibitors

or polymer-coated fertilizers) and application rate
• Organic amendment type (e.g., manure and composted manure by livestock type, other

organic fertilizers), and application rate
• Tillage implements and number of passes in each operation20

• Irrigation use on land parcel
• Amount of biochar application to the land parcel
• Whether biochar has previously been applied to this parcel of land
• Cover crop types

The additional activity data needed for the Tier 3 method using the DayCent process-based model21 
include: 

• Planting and harvesting dates
• Mineral fertilizer application method and timing of application(s)

20 Use this information to determine tillage intensity (i.e., intensive till, reduced till, and no-till), using the 
classification applied in the U.S. National GHG Inventory. See section 3.2.3.2 for more information about the 
tillage classification. 
21 The data requirements for the Tier 3 method are to estimate SOC stock changes and soil N2O emissions (see 
section 3.2.3.2). 
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• Organic amendment application method and timing of application(s)
• Timing of tillage operations
• Months of the year when the land parcel is irrigated
• Use of drainage practices in mineral soils and depth of drainage (common in hydric soils)
• Cover crop planting and harvesting dates, and termination method

The additional information needed for the Tier 1 method includes: 

• Crop harvest yields for annual crops
• Area of drained organic soils

Grazing Lands 

As with croplands, some activity data requirements for grazing lands are common to both the Tier 3 
and Tier 1 methods: 

• Area of the land parcel (i.e., field)
• Forage type (perennial grass such as cool or warm season grasses, legume, or mixed grass-

legume nitrogen-fixing species)
• Animal type and stocking rates
• Mineral fertilizer type (including enhanced-efficiency fertilizers with nitrification inhibitors

or polymer-coated fertilizers) and application rate
• Organic amendment type (e.g., manure and composted manure by livestock type, other

organic fertilizers), and application rate
• Use of irrigation on the land parcel (yes/no)
• Residue management, including proportion harvested, burned, grazed, or left in the field
• Renewal of the grazing land (yes/no)
• Amount of biochar application to the land parcel
• Whether biochar has previously been applied to this parcel of land

The additional activity data for grazing lands needed for the Tier 3 method using the DayCent 
process-based model include: 

• Months of the year with grazing
• Grazing method (continuous, rotational, or other types)
• Use of drainage practices and depth of drainage (e.g., drainage to improve grazing

conditions in hydric soils)
• Tillage implements and timing of tillage operations, and/or timing of herbicide applications

for renewal of forage grazing land, in addition to the timing and type of forage that is
replanted or naturally regenerates on the land parcel

• Months of the year when the land parcel is irrigated

The additional grazing lands information needed for the Tier 1 method includes: 

• Peak forage production before renewal of forage on grazing land
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• Area of drained organic soils

Additional Notes on Activity Data Requirements 

Crop yields are provided by the reporting entity for the crop system, as are peak forage amounts for 
grazing systems. In some years, the entity may not harvest the crop due to drought, pest outbreaks, 
or other reasons for crop failure. Similarly, forage production may decline to near zero in some 
years due to droughts. In those cases, the entity should provide the average crop yield or peak 
forage production in the past 5 years, along with an approximate percentage of crop or forage 
growth that occurred before crop failure or forage decline. To estimate the yield, the entity should 
multiply the average crop yield or peak forage production by the percentage of crop or forage 
growth obtained before failure or forage decline. 

The entity provides the amount of synthetic fertilizer, but to calculate the amount of synthetic 
fertilizer nitrogen applied to soils, the nitrogen contents of the fertilizers are also needed. Table 
3-20 provides nitrogen content information for common types of synthetic fertilizers. The entity
will need to provide the nitrogen content for any type of synthetic fertilizer that is not listed in the
table.

Table 3-20. Nitrogen Fraction of Common Synthetic Fertilizers (Percent by Weight) 

Synthetic Fertilizer % N 

Ammonium nitrate (NH4NO3) 33.5 
Ammonium nitrate limestone 20.5 
Ammonium sulfate 20.75 
Anhydrous ammonia 82 
Aqua ammonia 22.5 
Calcium cyanamide (CaCN2) 21 
Calcium ammonia nitrate 27.0 
Diammonium phosphate 18 
Monoammonium phosphate 11 
Potassium nitrate (KNO3) 13 
Sodium nitrate (NaNO3) 16 
Urea [CO(NH2)2] 45 

Source: Nebraska Department of Agriculture, n.d. 
These values are assumed to have no significant uncertainty for error propagation in an uncertainty analysis. 

Manure amendments require information on both the livestock type and the carbon and nitrogen 
content of organic inputs. Nitrogen and carbon fractions for common organic fertilizers are 
provided in table 3-16. In contrast, the entity only needs to provide the type of livestock on grazing 
lands where the manure is not managed after excretion onto the land, referred to as PRP manure. 
Use the methods in chapter 4 to estimate the amount of PRP manure nitrogen; assume a split with 
50 percent of the nitrogen in urine and the other 50 percent of the nitrogen in solids. Additional 
notes on the activity data requirements for the Tier 3 method can be found in section 3.2.3.2. 

3.2.4.3 Ancillary Data 
Ancillary data for the Tier 3 method include historical weather data and soil characteristics. 
Weather data are based on national datasets such as PRISM (PRISM Climate Group, 2018). Soil 
characteristics are based on national datasets such as SSURGO (Soil Survey Staff, 2023). The Tier 1 
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method needs information on the climate based on the IPCC Climate Classification (Reddy et al., 
2019), which an entity can derive by estimating mean annual temperature, precipitation, and 
potential evapotranspiration data from the PRISM data.  

3.2.4.4 Limitations and Uncertainty 

Direct Emissions 

Tier 3 method: Use the implicit model-based method to estimate uncertainty for direct soil N2O 
based on the Tier 3 method (see chapter 8). Uncertainty in the Tier 3 method is associated with the 
DayCent ecosystem model and includes imprecision and bias in the process-based model structure 
and parameters. Uncertainty is quantified with an empirically based approach, as used in the U.S. 
National GHG Inventory (Ogle et al., 2007; U.S. EPA, 2020). The method combines modeling and 
measurements to provide an estimate and uncertainty in direct soil N2O emissions for entity-scale 
reporting, similar to soil C. Measurements of soil N2O emissions may be based on a national soil 
monitoring network, or agricultural experiments to inform model uncertainty (see U.S. EPA, 2020, 
for examples associated with the DayCent ecosystem model). 

Uncertainty is assumed to be minor for the management activity data provided by the entity, and 
therefore the values are assumed to be certain. Uncertainties associated with model structure and 
parameters are quantified using an empirical method, as discussed above. The empirical method is 
based on fitting a linear mixed-effect model that is given in equation 3-21 for croplands and a linear 
model that is given in equation 3-22 for grazing lands, along with the covariance matrices for the 
fixed effects.22 This model is applied M number of times to produce replicates of direct soil N2O 
emissions that can be used to compute the median and 95-percent prediction interval. Note that the 
same set of random draws, i.e., M random draws, for fixed effects and the random effect for the site 
are used in the calculation of direct soil N2O emissions in each year of the time series for a land 
parcel. In contrast, the M replicates of the residual error are redrawn in each year of the time series 
for a land parcel. See chapter 8 for more information about how to propagate uncertainty using the 
implicit model-based method. 

Equation 3-21: Empirical Uncertainty Model for Quantifying Uncertainty in the Tier 3 
Method for Direct Soil N2O Emissions in Croplands 

𝐸𝐸𝐶𝐶𝐷𝐷𝑏𝑏𝐼𝐼𝐶𝐶𝑇𝑇𝑙𝑙𝑃𝑃 = exp {0.5693 + (0.3577 × (ln𝑁𝑁2𝑂𝑂𝐷𝐷𝑏𝑏𝐷𝐷𝐶𝐶𝑝𝑝𝑛𝑛𝑡𝑡 ÷ 365)) + (0.3373 × 𝐶𝐶𝑏𝑏𝐶𝐶𝑙𝑙)
+ (−0.2242 × 𝑆𝑆𝐹𝐹) + (0.2537 × (ln𝑁𝑁2𝑂𝑂𝐷𝐷𝑏𝑏𝐷𝐷𝐶𝐶𝑝𝑝𝑛𝑛𝑡𝑡 ÷ 365) × 𝑆𝑆𝐹𝐹) + 𝑏𝑏(𝑚𝑚)} ÷ 106 × 365

Where: 
ERDayCent  = annual soil N2O emissions for land parcel based on DayCent model 

simulation after applying the implicit model-based uncertainty method 
(metric tons N2O-N/ha) 

ln𝑁𝑁2𝑂𝑂𝐷𝐷𝑏𝑏𝐷𝐷𝐶𝐶𝑝𝑝𝑛𝑛𝑡𝑡   = natural log of the predicted annual direct N2O emissions from the DayCent 
ecosystem model (grams N2O-N/ha) 

𝐶𝐶𝑏𝑏𝐶𝐶𝑙𝑙 = assign a value of 1 if the crop is corn, and a value of 0 if the crop is not corn 
(dimensionless) 

22 The empirical models may be revised if the structure and/or parameterization of the DayCent ecosystem 
model is modified for the U.S. National GHG Inventory to ensure that entity-scale reporting is consistent with 
national inventory methods. 
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𝑆𝑆𝐹𝐹   = assign a value of 1 if synthetic fertilizer is applied, and a value of 0 if 
synthetic fertilizer is not applied (dimensionless) 

𝑏𝑏(𝑚𝑚) = sum of the random effect associated with the site, site within year and 
residual error from the linear mixed effect model. The random effects and 
residue error are drawn from normal distributions with a mean of 0 and the 
following standard deviations, site = 0.8002, site within year = 0.5921 and 
residual error = 0.4621 

106 = conversion from grams N2O-N/ha to metric tons N2O-N/ha, 
365 = conversion for annual estimate (days/year) 

The implicit model-based method also requires the following covariance matrix: 

Intercept 𝐥𝐥𝐥𝐥𝑵𝑵𝑵𝑵𝑺𝑺𝑫𝑫𝑫𝑫𝑫𝑫𝑺𝑺𝑫𝑫𝑫𝑫𝑫𝑫 Corn SF 𝐥𝐥𝐥𝐥𝑵𝑵𝑵𝑵𝑺𝑺𝑫𝑫𝑫𝑫𝑫𝑫𝑺𝑺𝑫𝑫𝑫𝑫𝑫𝑫 × SF 

Intercept 0.016526 -0.00188 -0.00135 -0.0016 0.001167 
ln𝑁𝑁2𝑂𝑂𝐷𝐷𝑏𝑏𝐷𝐷𝐶𝐶𝑝𝑝𝑛𝑛𝑡𝑡 -0.00188 0.001751 -0.00023 0.000679 -0.00113
Corn -0.00135 -0.00023 0.006657 -0.0008 0.00000776 
SF -0.0016 0.000679 -0.0008 0.00742 -0.00312
ln𝑁𝑁2𝑂𝑂𝐷𝐷𝑏𝑏𝐷𝐷𝐶𝐶𝑝𝑝𝑛𝑛𝑡𝑡  × SF 0.001167 -0.00113 0.00000776 -0.00312 0.002111 

Equation 3-22. Empirical Uncertainty Model for Quantifying Uncertainty in the Tier 3 
Method for Direct Soil N2O Emissions in Grazing Lands 

𝐸𝐸𝐶𝐶𝐷𝐷𝑏𝑏𝐼𝐼𝐶𝐶𝑇𝑇𝑙𝑙𝑃𝑃 = exp {0.4947 + (0.5690 × (ln𝑁𝑁2𝑂𝑂𝐷𝐷𝑏𝑏𝐷𝐷𝐶𝐶𝑝𝑝𝑛𝑛𝑡𝑡 ÷ 365)) + 𝑏𝑏(𝑚𝑚)} ÷ 106 × 365 

Where: 
ERDayCent  = annual soil N2O emissions for land parcel based on DayCent model 

simulation after applying the implicit model-based uncertainty method 
(annual metric tons N2O-N/ha) 

ln𝑁𝑁2𝑂𝑂𝐷𝐷𝑏𝑏𝐷𝐷𝐶𝐶𝑝𝑝𝑛𝑛𝑡𝑡  = natural log of the predicted annual direct N2O emissions from the DayCent 
ecosystem model (g N2O-N/ha) 

𝑏𝑏(𝑚𝑚) = residual error from the linear model. The residual error is drawn from a 
normal distribution with a mean of 0 and a standard deviation of 0.8292. 

106 = conversion from grams N2O-N/ha to metric tons N2O-N/ha 
365 = conversion for annual estimate (days/year) 

The implicit model-based method also requires the following covariance matrix: 

Intercept 𝐥𝐥𝐥𝐥𝑵𝑵𝑵𝑵𝑺𝑺𝑫𝑫𝑫𝑫𝑫𝑫𝑺𝑺𝑫𝑫𝑫𝑫𝑫𝑫 
Intercept 0.015942 -0.00724
ln𝑁𝑁2𝑂𝑂𝐷𝐷𝑏𝑏𝐷𝐷𝐶𝐶𝑝𝑝𝑛𝑛𝑡𝑡  -0.00724 0.006458 

To reduce uncertainty, annual emissions can be aggregated across land parcels by summing N2O 
emissions within iterations in the Monte Carlo analysis across entities, and then extracting the 
median and constructing a 95-percent prediction interval from the aggregated results (see box 8-2 
in chapter 8). A similar process can also be used to aggregate annual estimates of N2O emissions to 
produce results for multiple years (e.g., change over 5 or 10 years). Uncertainties are larger at finer 
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spatial and temporal scales due to the random effect for site and residual error that is reduced as 
the calculations incorporate emissions from more land parcels and/or years. Aggregation is a way 
to manage uncertainty and limit the risk associated with programs that include sequestration of 
N2O emissions in agricultural soils as a mitigation pathway (see Ogle et al., 2010, for uncertainty at 
different scales of aggregation in which uncertainties can be over 100 percent at the entity scale, 
but significantly reduced with aggregation of farms and ranches to larger spatial scales and 
aggregating annual data across years).  

One of the key sources of uncertainty is limited observations of N2O emissions that will not allow 
fluxes for a particular location or time to be predicted precisely. Nevertheless, while it may be 
decades before annual rates of N2O emissions from a specific field can be estimated with high 
certainty and for low cost, average estimates for similar cropping systems and landscapes will 
converge as estimates aggregate to larger areas.  

The key uncertainties in this method are misspecification of the model processes in the DayCent 
ecosystem model and interactions among management practices that may affect the fundamental 
processes driving N2O emissions—e.g., nitrification, denitrification, and gas diffusion. In addition, 
there is uncertainty due to limited measurement data for evaluating errors in the parameters and 
structure of DayCent using the empirically based method. 

Tier 1 method: Use the explicit model-based method to estimate uncertainty for the Tier 1 method 
(see chapter 8). Uncertainty is assumed to be minor for the management activity data provided by 
the entity, and therefore the values are assumed to be certain. Uncertainties in emission factors are 
provided in section 3.2.4.1, and are propagated through the calculations using a Monte Carlo 
simulation. Table 3-17 provides the uncertainty for the model parameters associated with the Tier 
1 method, including emission factors and scaling factors. Table 3-3 and table 3-18 provide the 
uncertainty for residue nitrogen calculations. See chapter 8 for more information about the explicit 
model-based method. 

There are additional uncertainties in this method due to a lack of inference about how different 
management practices affect fluxes across regions and cropping systems, particularly at 
subnational scales. These limitations contribute to uncertainty in the Tier 1 factors produced by 
IPCC.  

Indirect Emissions 

Use the explicit model-based method to estimate uncertainty for the Tier 1 method (see chapter 8). 
Uncertainty is assumed to be minor for the management activity data provided by the entity, and 
therefore the values are assumed to be certain. Uncertainties in parameters and factors are 
provided in section 3.2.4.1, and are propagated through the calculations using a Monte Carlo 
simulation. Table 3-19 provides the uncertainty for the emission factors and scaling factors. Table 
3-3 and table 3-18 provide uncertainty for residue nitrogen calculations. See chapter 8 for more
information about the explicit model-based method.

Limitations 

Although there is uncertainty in the Tier 1 and 3 methods, there are no known limitations in 
applying the methods to all croplands and grazing lands in the United States. However, it is 
important to apply the correct method to the land parcel following the directions given in figure 
3-3.
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3.2.5 Methane Flux for Nonflooded Soils 

Box 3-10. Method for Estimating CH4 Flux for Nonflooded Soils 
 Net CH4 uptake occurs in nonflooded soils that are used for crop production or grazing land

(except for drained organic soils, which can be neutral or a net source).
 Estimation of CH4 flux for nonflooded mineral soils in cropland and grazing lands is based on

CH4 flux in natural vegetation—whether grassland or forest—attenuated by current cropland
or grazing land use practices.

 Estimation of CH4 flux for drained organic soils is based on CH4 flux under cropland and
grazing land management.

 Methane emissions from nonflooded mineral soils are not addressed by IPCC and are not
included in the U.S. National GHG Inventory. The Tier 3 method incorporates entity-specific
management data for the land parcel to estimate the CH4 flux.

3.2.5.1 Description of Method 
This method provides an estimate of CH4 flux for nonflooded soils in croplands and grazing lands. 
Methane is produced in soils through methanogenesis, which occurs under anaerobic conditions; it 
is consumed in soils through methanotrophy, which is the dominant process under aerobic 
conditions. In most nonflooded soils under cropland or grazing land management, there will be a 
net uptake of CH4 although the rate will vary depending on the land use (Del Grosso et al., 2000; 
McDaniel et al., 2019; Mosier et al., 1991; Robertson et al., 2000; Smith et al., 2000). However, 
wetlands with organic soils that are drained and converted into cropland or grazing land may have 
no net flux or possibly a net emission of CH4 to the atmosphere (Drösler et al., 2013; Tan et al., 
2020). 

Mineral Soils 

The calculation for nonflooded mineral soils is based on average CH4 uptake in soils with natural 
vegetation—whether grassland or forest—attenuated by current land use (see appendix 3A.6.1 for 
rationale). Management factors determine the amount of attenuation for the base rates. Use 
equation 3-23 to estimate the annual amount of CH4 uptake for nonflooded mineral soils in a land 
parcel. The factors to estimate CH4 flux for nonflooded mineral soils are provided in table 3-21. 

Equation 3-23: Annual CH4 Flux in Nonflooded Mineral Soils 

CH4𝑛𝑛𝑓𝑓𝑏𝑏𝑏𝑏 = (CH4𝑏𝑏 × 𝐷𝐷𝐹𝐹) × 𝐴𝐴 × CH4𝑀𝑀𝑊𝑊𝑃𝑃

Where: 
CH4nfms = annual CH4 flux for nonflooded mineral soils (metric tons CO2-eq) 
CH4b = base annual CH4 flux for mineral soils with natural vegetation (metric tons 

CH4/ha) 
MF = management factor for cropland and grazing land on mineral soils 

(dimensionless) 
A = area of the land parcel (ha) 
CH4GWP = global warming potential for CH4 (metric tons CO2-eq/metric tons CH4) 
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Drained Organic Soils 

The calculation for nonflooded croplands and grazing lands that occur on drained organic soils is 
based on an average CH4 flux rate, i.e., emission factor. Use equation 3-24 to estimate the annual 
CH4 flux for drained organic soils in a land parcel.  

Equation 3-24: Annual CH4 Flux for Drained Organic Soils 

C𝐻𝐻4𝑑𝑑𝑏𝑏𝑏𝑏 =  C𝐻𝐻4𝑑𝑑𝑏𝑏 × 𝐴𝐴 × C𝐻𝐻4𝑀𝑀𝑊𝑊𝑃𝑃

Where: 
CH4dos = annual CH4 flux for drained organic soils (metric tons CO2-eq) 
CH4dw = CH4 emission factor for drained organic soils (metric tons CH4/ha) 
A = area of the land parcel (ha) 
CH4GWP = global warming potential for CH4 (metric tons CO2-eq/metric tons CH4) 

Table 3-21 provides the factors to estimate CH4 flux for nonflooded soils. 

Table 3-21. Factors and 95-Percent Confidence Intervals for Estimating CH4 Flux 

Parameter Natural 
Vegetation Current Land Use Factor 

95-Percent
Confidence

Interval 

Data 
Source 

Base annual CH4 flux for 
mineral soils with natural 
vegetation (CH4b) (metric 
tons CH4/ha) 

Grasslanda n/a -0.0024 ±0.0048 See 3A.6.2 

Forest n/a -0.0028 ±0.0046 See 3A.6.2 

Management factor for 
cropland and grazing land 
on mineral soils (MF) 
(dimensionless) 

Grasslanda Annual cropland 0.34 ±1.1138 

See 3A.6.2 Forest Annual cropland 0.32 ±0.8220 

Grasslanda/forest Perennial cropland 1 n/a 

CH4 emission factor for 
drained organic soils 
(CH4dw) (kg CH4/ha) 

Wetland (i.e., 
organic soil) 

Cropland 0 -2.8 to 2.8 Drösler et
al. (2013),
i.e., IPCC

Tier 1 
factors 

Grazing land with 
deep drainageb 16 2.4 to 29 

Grazing land with 
shallow drainageb 39 -2.9 to 81

The uncertainty is a 95-percent confidence interval with a probability density function that has a normal distribution. 
These probability density functions can be used to quantify uncertainty in the annual emissions. Factors with “n/a” 
indicate that uncertainty is not applicable because the uncertainty is already incorporated into the base annual CH4 flux. 
Note: even though the most probable values from the probability distribution functions imply a net gain of CH4 in mineral 
soils and a net loss of CH4 from organic soils, there are large uncertainties in several of these factors. Consequently, there 
is some probability of a net loss of CH4 from mineral soils and a net uptake of CH4 in drained organic soils. The confidence 
intervals represent uncertainty for a national scale application of the method, and so there may be additional uncertainty 
with application of this method at the entity scale that is not quantified. 
a Grassland includes both native rangelands and pastures for this method. There is no significant difference in the CH4 

flux between pasture and native grasslands (appendix 3A.6.2). 
b Assume shallow drainage if the depth of drainage if unknown. 

3.2.5.2 Activity Data 
This method requires current land use and type of natural vegetation. The entity will need to 
identify the current land use as either cropland or grazing land. If the area is a drained wetland that 
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has been converted into grazing land, the entity will also need to identify if the land has deep or 
shallow drainage. The entity may identify the natural vegetation if known or use the reference 
ecological site from the NRCS ecological site descriptions (USDA, 2017), identifying if the parcel 
would be grassland or forest in the reference condition using the NRCS Web Soil Survey 
(https://websoilsurvey.nrcs.usda.gov/app/HomePage.htm).23 

3.2.5.3 Limitations and Uncertainty 
Use the explicit model-based method to estimate uncertainty for the methane flux in nonflooded 
soils (see chapter 8). Uncertainty is assumed to be minor for the management activity data 
provided by the entity, and therefore the values are assumed to be certain. Uncertainties in base 
flux rates, management factors, and emission factors are provided in table 3-21 of section 3.2.5.1, 
and are propagated through the calculations using a Monte Carlo simulation. See chapter 8 for more 
information about the explicit model-based method. 

Major sources of uncertainty for the CH4 flux method include the following: 

• Lack of knowledge about the natural vegetation.
• Uncertainties associated with estimating base CH4 flux rates for natural vegetation (CH4b in

equation 3-20) or drained organic soils (CH4dw in equation 3-21).
• Uncertainty associated with the management factors associated with attenuation of base

flux rates for mineral soils, particularly for perennial cropland management.

There are no known limitations to the application of this method to croplands and grazing lands in 
the United States although the method provides a limited inference on the fluxes associated with 
perennial cropland due to no clear impact of managing land with perennial crops compared to 
natural vegetation. 

3.2.6 Methane Emissions From Flooded Rice Cultivation 

Box 3-11. Method for Estimating CH4 Emissions From Rice Cultivation 
 This method is based on the IPCC equations (Ogle et al., 2019b) for CH4 with country-specific

factors, which is a Tier 2 method.
 The baseline emission factor—or the typical daily rate at which CH4 is produced per unit of

land area—represents fields that are continuously flooded during the cultivation period, are
not flooded during the 180 days before cultivation and receive no organic amendments.

 Differences between the baseline conditions and updated conditions are estimated using
scaling factors (e.g., water regime adjustments before and during the cultivation period,
organic amendments). Methane scaling factors are from Ogle et al. (2019b).

 The Tier 2 method is introduced with the same IPCC base equation but with regional baseline
and scaling factors, including water regime, organic amendments, sulfur amendment, residue
litter, and seeding method based on Linquist et al. (2018).

 The method for CH4 emissions uses entity-specific seasonal parcel data as input into the IPCC
equation.

23 If the information is not available through the USDA-NRCS web soil survey, then the entity should contact 
USDA-NRCS extension office for guidance on identifying the reference condition. 

https://websoilsurvey.nrcs.usda.gov/app/HomePage.htm
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3.2.6.1 Description of Method 
The methodology is formulated on a baseline emission factor, or daily rate, at which CH4 is 
produced per unit of land area for rice production with continuously flooded conditions and no 
organic amendments (see appendix 3A.7 for rationale). The baseline emission factor is scaled 
according to the specific practices and conditions for the land parcel, including water management, 
organic amendments, use of sulfur products, residue amount, and seeding practices. Equation 3-25 
has been adapted from the IPCC methodology for estimating rice CH4 emissions from a land parcel 
(Ogle et al., 2019b).  

Equation 3-25: Annual Flooded Rice CH4 Emissions 

CH4𝑃𝑃𝑏𝑏𝑏𝑏𝑝𝑝 =  CH4𝑀𝑀𝑊𝑊𝑃𝑃 × 10−3 × �𝐸𝐸𝐹𝐹𝑏𝑏 × 𝑃𝑃 × 𝐴𝐴
𝑀𝑀𝑆𝑆

 

Where: 
CH4Rice = annual CH4 emissions from rice cultivation (metric tons CO2-eq) 
CH4GWP = global warming potential for CH4 (metric tons CO2-eq/metric tons CH4) 
EFi = integrated daily emission factor based on management for each growing 

season (kg CH4/ha/day) 
t = cultivation period of rice for each growing season (days) 
A = harvested area of rice for each growing season (ha) 
GS = growing seasons for rice cultivation in the reporting year 

To determine the daily emission factor to use in equation 3-25, begin with the flowchart in figure 
3-4 and the associated location information in figure 3-5.

a Verify that the location is within the identified counties in figure 3-5. 

Figure 3-4. Decision Tree to Choose Between Tier 1 and Tier 2 Methods to Estimate the Daily 
Emission Factor for Rice CH4 Emissions 
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Shading shows U.S. regions that use the Tier 2 method, including the Mid-South (Arkansas, Louisiana, 
Mississippi, and certain counties in Missouri and Texas) and California. A full list of the counties is 
provided in appendix 3A.6.2 that should use the Tier 2 method in Missouri and Texas. Use the Tier 1 
method for all other U.S. regions. 

Figure 3-5. Use of Tier 2 vs. Tier 1 to Estimate Daily Emission Factor for Rice CH4 Emissions 

Tier 1 Method 

The daily emission factor for the Tier 1 method is estimated based on the conditions that influence 
CH4 emissions for flooded rice production, including the water management and organic 
amendment rate (Ogle et al., 2019b). The baseline emission factor represents the emission rate for 
continuously flooded water management with no organic amendments and no flooding before 
cultivation.  

The rate at which CH4 is emitted depends on water flooding/drainage regimes and the rates and 
types of organic amendments applied to the soil. As such, scaling factors for a broad range of 
management options are provided with this methodology. The factors are differentiated by 
hydrological context (e.g., irrigated, rainfed, upland), cultivation period flooding regime (e.g., 
continuous, multiple aerations), time since the last flooding (before cultivation, e.g., over 180 days, 
under 30 days) and type of organic amendment (e.g., compost, farmyard manure, residue straw). 
Use equation 3-26 to estimate the daily emission factor for a land parcel with the Tier 1 method 
(defined by figure 3-5). 
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Equation 3-26: Flooded Rice CH4 Emission Factor (Tier 1) 
𝐸𝐸𝐹𝐹𝑏𝑏 = 𝐸𝐸𝐹𝐹𝑏𝑏 × 𝑆𝑆𝐹𝐹𝑏𝑏 × 𝑆𝑆𝐹𝐹𝑝𝑝 × 𝑆𝑆𝐹𝐹𝑏𝑏 

Where: 
EFi = integrated daily emission factor based on management for each growing 

season (kg CH4/ha/day) 
EFc = baseline emission factor for continuously flooded fields without organic 

amendments (kg CH4/ha/day) 
SFw =  scaling factor to account for the differences in water regime during the 

cultivation period (dimensionless) 
SFp =  scaling factor to account for the differences in water regime in the preseason 

before the cultivation period (dimensionless) 
SFo =  scaling factor to account for both type and amount of organic amendment 

applied (dimensionless) 

The baseline emission factor for North America associated with the IPCC Tier 1 method (Ogle et al., 
2019b) is given in table 3-22. 

Table 3-22. Baseline Emission Factor With 95-Percent Confidence Interval 

Baseline Emission Factor EFc 95-Percent Confidence Interval 

North America 0.65 0.44–0.96 

Source: Ogle et al., 2019b, Table 5.11, i.e., IPCC Tier 1 factors.  
Probability density function has a normal distribution. The confidence intervals represent uncertainty for a national scale 
application of the method, and so there may be additional uncertainty with application of this method at the entity scale 
that is not quantified. 

The water regime scaling factors for equation 3-23 are from Ogle et al. (2019b) and are shown 
below in table 3-23 and table 3-24. 

Table 3-23. Rice Water Regime Emission Scaling Factors (During Cultivation Period) With 
95-Percent Confidence Intervals 

Irrigated or 
Rainfed and 
Deep Water 

Water Regime During the 
Cultivation Period 

SFw 
95-Percent 
Confidence 

Interval 

Irrigated 
Continuously flooded 1 n/a 
Intermittently flooded—single drainage period 0.71 0.53–0.94 
Intermittently flooded—multiple drainage periods 0.55 0.41–0.72 

Rainfed and 
deep water 

Regular rainfed 0.54 0.39–0.74 
Drought prone 0.16 0.11–0.24 
Deep water 0.06 0.03–0.12 

Source: Ogle et al., 2019b, Table 5.12, i.e., IPCC Tier 1 factors. 
Probability density functions have a normal distribution that can be used to quantify uncertainty, and “n/a” indicates that 
uncertainty is not applicable because the uncertainty is already incorporated into another factor. The confidence intervals 
represent uncertainty for a national scale application of the method, and so there may be additional uncertainty with 
application of this method at the entity scale that is not quantified.  
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Table 3-24. Rice Water Regime Emission Scaling Factors (Before Cultivation Period) With 95-
Percent Confidence Interval 

Water Regime Before the Cultivation Period SFp 95-Percent Confidence Interval

Nonflooded preseason < 180 days 1 n/a 
Nonflooded preseason > 180 days 0.89 0.80–0.99 
Flooded preseason > 30 days 2.41 2.13–2.73 
Nonflooded preseason > 365 days 0.59 0.41–0.84 

Source: Ogle et al., 2019b, Table 5.13, i.e., IPCC Tier 1 factors. 
Probability density functions have a normal distribution that can be used to quantify uncertainty, and “n/a” indicates that 
uncertainty is not applicable because the uncertainty is already incorporated into another factor. The confidence intervals 
represent uncertainty for a national scale application of the method, and so there may be additional uncertainty with 
application of this method at the entity scale that is not quantified. 

To estimate the scaling factor for organic amendments to a land parcel, use equation 3-27. 

Equation 3-27: Organic Amendments Scaling Factor 

𝑆𝑆𝐹𝐹𝑏𝑏 = [1 + ∑(𝐶𝐶𝑂𝑂𝐴𝐴𝑏𝑏 × 𝐶𝐶𝐹𝐹𝑂𝑂𝐴𝐴𝑏𝑏)]0.59 

Where: 
SFo = scaling factor for both type and amount of organic amendment 
ROAi = rate of application of organic amendment type i (metric tons/ha) 
CFOAi = conversion factor for organic amendment type i 

Organic amendment type i may include straw (incorporated shortly or long before cultivation), 
compost, farmyard manure, and green manures. 

The factors for equation 3-27 are from Ogle et al. (2019b) and are shown below in table 3-25. 

Table 3-25. Conversion Factor for Organic Amendment in Rice Cultivation With 95-Percent 
Confidence Intervals 

Organic Amendments Conversion 
Factor 

95-Percent Confidence
Interval 

Straw incorporated shortly (< 30 days) before cultivation 1 0.8–1.17 
Straw incorporated long (> 30 days) before cultivation 0.19 0.11–0.28 
Compost 0.17 0.09–0.29 
Farmyard manure 0.21 0.15–0.28 
Green manure 0.45 0.36–0.57 

Source: Ogle et al., 2019b, Table 5.14, i.e., IPCC Tier 1 factors 
Probability density functions have a normal distribution that can be used to quantify uncertainty. The confidence 
intervals represent uncertainty for a national scale application of the method, and so there may be additional uncertainty 
with application of this method at the entity scale that is not quantified. 

Tier 2 Method 

A Tier 2 method with region-specific emission factors has been developed for the two primary rice 
growing regions in the United States, namely the Mid-South (Arkansas, Louisiana, Mississippi, and 
parts of Missouri and Texas) and California (Linquist et al., 2018). This method is adapted from the 
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Tier 1 method, with a baseline emission factor for each region given the standard practices and 
scaling factors to adjust for other practices that may be used by entities. Baseline standard practices 
for both regions assume no sulfur amendment and no organic amendment. Additional baseline 
standard practices in the Mid-South include low residue in the field before rice production, 
irrigation by continuous flooding, no intentional winter flooding, and drill seeding. Standard 
practices in California include medium to high residue in the field before rice production, irrigation 
by continuous flooding, intentional winter flooding, and water seeding. Use equation 3-28 to 
estimate the daily emission factor for a land parcel with the Tier 2 method (defined by figure 3-5). 

Equation 3-28: Flooded Rice CH4 Emission Factor (Tier 2) 

𝐸𝐸𝐹𝐹𝑏𝑏 = 𝐸𝐸𝐹𝐹𝑏𝑏 × 𝑆𝑆𝐹𝐹𝑏𝑏 × 𝑆𝑆𝐹𝐹𝑝𝑝 × 𝑆𝑆𝐹𝐹𝑏𝑏 × 𝑆𝑆𝐹𝐹𝑏𝑏 × 𝑆𝑆𝐹𝐹𝑚𝑚 × 𝑆𝑆𝐹𝐹𝑝𝑝 

Where: 
EFi = integrated daily emission factor based on management for each growing 

season (kg CH4/ha/day) 
EFc = baseline emission factor for continuously flooded fields (kg CH4/ha/day) 
SFw = scaling factor for water regime during the cultivation period (dimensionless) 
SFp = scaling factor to account for the differences in water regime in the preseason 

before the cultivation period (dimensionless) 
SFo = scaling factor for both type and amount of organic amendment applied 

(unitless) 
SFs = scaling factor for sulfur amendments to soils (dimensionless) 
SFr = scaling factor for residue litter amount (dimensionless) 
SFe = scaling factor for seeding method in California (dimensionless) 

Estimate the baseline emission factor using equation 3-29 and data in table 3-26. The percent of 
clay is based on the soil texture values in SSURGO for the surface soil layer (Soil Survey Staff, 2023). 

Equation 3-29: Flooded Rice Baseline Emission Factor for Tier 2 Method 

𝐸𝐸𝐹𝐹𝑏𝑏 = {𝐹𝐹𝑏𝑏𝑏𝑏 − [(𝐶𝐶𝑙𝑙𝑏𝑏𝐼𝐼 − 𝐵𝐵𝑂𝑂𝐶𝐶) × 𝐶𝐶𝑓𝑓]} ÷ 𝐶𝐶𝑝𝑝 

Where: 
EFc = baseline emission factor for continuously flooded fields (kg CH4/ha/day) 
EFsa = average seasonal CH4 emissions (kg CH4/ha/season) 
Clay = percent of clay associated with the soil texture (percentage); percent clay 

values that are greater than 54% are assigned a value of 54% 
BPC = base percent clay (percentage) 
Cf = clay factor (kg CH4/ha/season) 
Cp = cultivation period (days) 
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Table 3-26. Data for Estimating the Baseline Emission Factor for Mid-South and California 
Regions With 95-Percent Confidence Intervals in Parentheses 

Location 
Average Seasonal 

 CH4 Emission 
(kg CH4/ha/Season) 

Base Percent 
Clay 

(BPC, %) 

Clay Factor 
(Cf, kg 

CH4/ha/Season) 

Cultivation 
Period 

(Cp, Days) 

Mid-South 194 (129–260) 23 (19–27) 6.1 (1.63–10.55) 133 (125–140) 
California 218 (153–284) 46 (39–52) 8.1 (0.80–15.38) 140 (133–148) 

Source: Linquist et al., 2018. 
Probability density functions have a normal distribution that can be used to quantify uncertainty. The uncertainty in the 
base percent clay is based on the authors’ expert opinion. The confidence intervals represent uncertainty for a regional 
scale application of the method, and so there may be additional uncertainty with application of this method at the entity 
scale that is not quantified. 

The scaling factors for the water management regime are provided in table 3-27 from Linquist et al. 
(2018). 

Table 3-27. Region-Specific Rice Water Regime Emission Scaling Factors With 95-Percent 
Confidence Intervals 

Water Management SFw 95-Percent Confidence Interval

Continuously flooded 1 n/a 
Intermittently flooded—single aeration 0.61 0.53–0.70 
Intermittently flooded—multiple aeration 0.17 0.09–0.35 

Source: Linquist et al., 2018. 
Probability density functions have a normal distribution that can be used to quantify uncertainty, and “n/a” indicates that 
uncertainty is not applicable because the uncertainty is already incorporated into another factor. The confidence intervals 
represent uncertainty for a regional scale application of the method, and so there may be additional uncertainty with 
application of this method at the entity scale that is not quantified. 

Table 3-28 presents the scaling factors for water management during the preseason cultivation 
period adopted from the Tier 1 method. The baseline in California includes intentional winter 
flooding and the baseline in the Mid-South includes no intentional winter flooding.  

Table 3-28. Rice Water Regime Emission Scaling Factors (Preseason Cultivation Period) With 
95-Percent Confidence Intervals

Region Water Regime Before the Cultivation Period SFp 95-Percent Confidence
Interval 

California 
Nonflooded preseason 0.41 0.37–0.47 
Flooded preseason > 30 days 1 n/a 

Mid-South 
Nonflooded preseason 1 n/a 
Flooded preseason > 30 days 2.41 2.13–2.73 

Source: Ogle et al., 2019b, Table 5.13, i.e., IPCC Tier 1 factors. 
Probability density functions have a normal distribution that can be used to quantify uncertainty, and “n/a” indicates that 
uncertainty is not applicable because the uncertainty is already incorporated into another factor. The confidence intervals 
represent uncertainty for a regional scale application of the method, and so there may be additional uncertainty with 
application of this method at the entity scale that is not quantified. 
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To estimate the scaling factors for organic amendment type and rate, use the same equation and 
factors as the Tier 1 method (equation 3-27 and table 3-25)—but only for compost, farmyard 
manure, and green manure, as the residue is considered in SFr.  

The scaling factor for sulfur amendments to soils depends on the sulfur application rate. Estimate 
the factor using equation 3-30, developed by Linquist et al. (2018). 

Equation 3-30: Flooded Rice Scaling Factor for Sulfur 
Amendments to Soils in the Tier 2 Method 

With sulfur amendments > 0 and ≤ 338 kg S/ha: 

𝑆𝑆𝐹𝐹𝑏𝑏 = 1 − (𝑆𝑆𝐶𝐶 × 0.00133) 
Where: 

SFs  = scaling factor for sulfur amendments to soils (dimensionless) 
SR = sulfur application rate (> 0 and ≤ 338 kg S/ha) (kg S/ha) 

Without sulfur amendments or amendments > 338 kg S/ha: 

𝑆𝑆𝐹𝐹𝑏𝑏 = 1 

The scaling factors for the previous crop residue are provided in table 3-29 from Linquist et al. 
(2018). The crop-specific residue classifications are provided in table 3-11. 

Table 3-29. Scaling Factors for Region-Specific Residue Amount of Previous Crop With 95-
Percent Confidence Intervals 

Residue Litter Amount Region SFr 95-Percent Confidence
Interval 

Low or medium residue (soybean or cotton) or 
residue removed/burned/grazed 

Mid-South 1 n/a 
California 0.46 0.37–0.58 

High residue (rice or corn) 
Mid-South 2.16 1.72–2.74 
California 1 n/a 

Source: Linquist et al., 2018. 
Probability density functions have a normal distribution that can be used to quantify uncertainty, and “n/a” indicates that 
uncertainty is not applicable because the uncertainty is already incorporated into another factor. The confidence intervals 
represent uncertainty for a regional scale application of the method, and so there may be additional uncertainty with 
application of this method at the entity scale that is not quantified. 

The scaling factors for the seeding method are provided in table 3-30 from Linquist et al. (2018). 
These factors are only applied to California; for the Mid-South, use a value of 1. 
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Table 3-30. Region-Specific Seeding Method Scaling Factors With 95-Percent Confidence 
Intervals 

Region Seeding Method SFe 95-Percent Confidence
Interval 

California 
Water seeded 1 n/a 
Drill seeded with medium to high residue 0.4 0.32–0.52 
Drill seeded with low residue 1 n/a 

Mid-South All seeding types 1 n/a 

Source: Linquist et al., 2018. 
Probability density functions have a normal distribution that can be used to quantify uncertainty, and “n/a” indicates that 
uncertainty is not applicable because the uncertainty is already incorporated into another factor. The confidence intervals 
represent uncertainty for a regional scale application of the method, and so there may be additional uncertainty with 
application of this method at the entity scale that is not quantified. 

3.2.6.2 Activity Data 
The Tier 1 and Tier 2 methods require the following activity data: 

• Cultivation period (days)
• Harvested area (ha)
• Water management practices during the cultivation period (e.g., aeration or not)
• Water management during the precultivation period
• Organic amendment type and rate (metric tons/ha)

The Tier 2 method requires additional management activity data: 

• Sulfur amendment rate (kg/ha)
• Seeding method

3.2.6.3 Ancillary Data 
Ancillary data for the Tier 2 method include soil texture, or more specifically the clay content of the 
soil. Soil texture data for this method are available from SSURGO (Soil Survey Staff, 2023). 

3.2.6.4 Limitations and Uncertainty 
Use the explicit model-based method to estimate uncertainty for methane emissions with rice 
cultivation (see chapter 8). Uncertainty is assumed to be minor for the management activity data 
provided by the entity, and therefore the values are assumed to be certain. Uncertainties in 
emission factors are provided in section 3.2.6.1, and are propagated through the calculations using 
a Monte Carlo simulation. See chapter 8 for more information about the explicit model-based 
method. 

CH4 emissions are the result of several interacting biological processes, which by nature vary 
spatially and temporally. The greatest amount of uncertainty is the baseline emission factor, but 
there is also uncertainty in the scaling factors. Reducing uncertainty in the future will require more 
data from experimental studies and monitoring networks, and possibly the adoption of other 
approaches than simple empirical methods, such as process-based simulation models.  

The Tier 1 method also has additional uncertainty because the baseline emissions and scaling 
factors address water and organic matter management and do not include other practices, among 
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them important mitigation options. Further research is required in other regions of the country 
before region-specific values can be developed to address these limitations. However, it is 
noteworthy that most of the rice production in the United States occurs in the Mid-South and 
California regions, which are included in the Tier 2 method. 

Although there is uncertainty in the Tier 1 and 2 methods, there are no known limitations in 
applying the methods to all rice production systems in the United States. However, it is important to 
apply the correct method to the land parcel following the directions given in figure 3-4. 

3.2.7 Carbon Dioxide From Carbonate Lime Applications to Soils 

Box 3-12. Method for Estimating CO2 Emissions From Carbonate Lime Applications 
 This method uses the IPCC equation (de Klein et al., 2006) with U.S.-specific emission factors,

which is a Tier 2 method.
 The method requires entity-specific annual parcel data as input into the IPCC equation (i.e.,

the amount of carbonate lime, including crushed limestone and dolomite applied to soils).

3.2.7.1 Description of Method 
The approach to estimating CO2 emissions from liming is a Tier 2 method using equations 
developed by IPCC (de Klein et al., 2006), with emission factors based on conditions in United 
States agricultural lands (see appendix 3A.8 for rationale and additional documentation). Use 
equation 3-31 to estimate annual emissions from carbonate lime additions to a land parcel.  

Equation 3-31: Annual Change in Soil Carbon Stocks From Carbonate Lime Application 

∆𝐶𝐶𝐿𝐿𝑏𝑏𝑏𝑏𝑝𝑝 = 𝐷𝐷 × 𝐸𝐸𝐹𝐹 ×  CO2MW 

Where: 
ΔCLime = annual change in soil carbon stocks from the lime application (metric tons CO2-

eq) 
M = annual application of lime as crushed limestone or dolomite 

(metric tons crushed limestone or dolomite) 
EF = metric ton CO2-C emissions per metric ton of lime (metric tons carbon/metric 

tons lime) 
CO2MW = ratio of molecular weight of CO2 to carbon = 44/12 (metric tons CO2/metric 

tons C 

The amount of lime applied is provided by the reporting entity. The emission factors for equation 
3-28 are provided in table 3-31.
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Table 3-31. Emission Factors for Carbonate Lime Applications to Soils With 95-Percent 
Confidence Intervals in Parentheses (Metric Tons CO2-C/Tons Carbonate Lime) 

Carbonate Lime 
Type EF Distribution Source 

Limestone 0.059 
(0.001–0.117) Triangle West and McBride (2005); U.S. EPA 

(2020) 

Dolomite 0.064 
(0.001–0.127) Triangle West and McBride (2005); U.S. EPA 

(2020) 

Probability density functions have a triangular distribution that can be used to quantify uncertainty. The confidence 
intervals represent uncertainty for a national scale application of the method, and so there may be additional uncertainty 
with application of this method at the entity scale that is not quantified. 

3.2.7.2 Activity Data 
The method requires data on the amount of lime (crushed limestone or dolomite) applied to soils. 

3.2.7.3 Limitations and Uncertainty 
Use the explicit model-based method to estimate uncertainty for CO2 emissions from carbonate 
lime applications to soils (see chapter 8). Uncertainty is assumed to be minor for the management 
activity data provided by the entity, i.e., the amount of carbonate lime applied to soils, and therefore 
the values are assumed to be certain. Uncertainty in the emission factor is provided in table 3-31 of 
section 3.2.7.1 and is propagated through the calculations using a Monte Carlo simulation. See 
chapter 8 for more information about the explicit model-based method. 

Uncertainty in the emission factors is due to variations in emissions related to soil pH and nitrogen 
fertilizer application rate, which both influence the chemical pathway of lime dissolution (Hamilton 
et al., 2007; West and McBride, 2005). More specifically, the emission factor will not accurately 
estimate emissions of lime dissolution if nitric acid (HNO3) is dominant. Nitric acid is produced 
when nitrifying bacteria convert ammonium-based (NH4+) fertilizer and other sources of NH4+ to 
nitrate (NO3-). There is also uncertainty because the data that were used in deriving the emission 
factors, were based on studies conducted in the Midwest. However, the uncertainty in the emission 
factors addresses this fact with a large range of possible values, which likely covers the true 
emission rates in all regions of the United States. 

Although there are uncertainties in the emission estimates, there are no known limitations that 
would preclude the application of this method to all croplands and grazing lands in the United 
States. 

3.2.8 Noncarbon Dioxide Emissions From Biomass Burning 

Box 3-13. Method for Estimating Non-CO2 Emissions From Biomass Burning 
 The method uses the IPCC Tier 1 equation and emission factors (Aalde et al., 2006).
 Entities provide the specific annual parcel data on area burned for croplands and grazing

land, in addition to the crop type(s) and harvest yield data.
 The method requires residue-yield ratios and combustion efficiency as inputs to the IPCC

equation, which is provided in this section.
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3.2.8.1 Description of Method 
The model to estimate non-CO2 GHG emissions and precursors has been adapted from methods 
developed by IPCC (Aalde et al., 2006) (see appendix 3A.9 for rationale). Use equation 3-32 to 
estimate annual emissions due to biomass burning on a parcel of land. As needed, sum the results 
for the different GHGs (e.g., CH4, N2O) to determine the total annual emissions. 

Equation 3-32: Annual GHG Emissions From Biomass Burning 

𝐺𝐺𝐻𝐻𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐼𝐼𝑚𝑚𝑛𝑛𝑏𝑏𝑛𝑛𝑎𝑎 = 𝐴𝐴 × 𝐷𝐷 × 𝐶𝐶𝑇𝑇 × 𝐸𝐸𝐹𝐹 × 10−3 × 𝐺𝐺𝐻𝐻𝐺𝐺𝑀𝑀𝑊𝑊𝑃𝑃

Where: 
GHGbiomassburning = annual emissions of GHG or precursor due to biomass burning 

(metric tons CO2-eq) 
A = area burned (ha) 
M = mass of fuel available for combustion (metric tons dry matter/ha) 
Ce = combustion efficiency, dimensionless 
EF = emission factor (g GHG/kg of burned biomass) 
GHGGWP = global warming potential for each GHG 

(metric tons CO2-eq/metric tons GHG). See chapter 2, table 2-2. 

The area of the land parcel is entered by the reporting entity, and the other inputs and emission 
factors are either calculated or provided in the tables below. Approximate the mass of the fuel 
combusted in grazing land for a land parcel with equation 3-33. 

Equation 3-33: Mass of Fuel for Grazing Land 

𝐷𝐷 = (𝐻𝐻𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝 ÷ 𝐶𝐶) × (𝐷𝐷 ÷ 100) 

Where: 
M = mass of fuel available for combustion (metric tons dry matter/ha) 
Hpeak = annual peak aboveground herbaceous biomass carbon stock 

(metric tons C/ha) 
C = carbon fraction of aboveground biomass (metric tons C/metric tons dry 

matter) 
D = percentage of biomass present at the stage of burning relative to peak (%) 

The amount of peak aboveground biomass for grazing land, which is used in equation 3-33, is 
estimated with equation 3-3 in section 3.2.1. The carbon fraction for grassland herbaceous biomass 
is 0.47 metric tons of dry matter/metric tons of carbon (Verchot et al., 2006), with a ±5-percent 
uncertainty for a 95-percent confidence interval (table 3-32). The percentage of biomass present at 
the stage of burning relative to the peak biomass is determined by the reporting entity or set to a 
value of 1. The estimated mass of fuel for grazing lands, which is approximated with equation 3-30, 
does not include the dead biomass. If there is significant residual litter (i.e., dead biomass) in 
grazing systems, multiply the mass of fuel by 2 as a conservative estimate of the total live and dead 
biomass on the land parcel, and adjust the carbon fraction to 0.44 metric tons of dry matter/metric 
ton of carbon (Verchot et al., 2006; mean of grassland herbaceous biomass and litter), with a ±5-
percent uncertainty for a 95-percent confidence interval (table 3-32). 
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Table 3-32. Carbon Fraction for Grassland Herbaceous Biomass With 95-Percent Confidence 
Intervals in Parentheses (Metric Tons C/Tons Dry Matter) 

Factor Distribution Source 

C fraction with no significant 
amount of dead biomass 

0.47 
(0.45–0.49) Normal Verchot et al. (2006), i.e., 

IPCC Tier 1 factors 
C fraction with significant 
amount of dead biomass 

0.44 
(0.42–0.46) Normal Verchot et al. (2006), i.e., 

IPCC Tier 1 factors 

Verchot et al. (2006) do not provide uncertainty, so uncertainty has been assigned based on the authors’ expert opinion. 
The 95-percent confidence intervals have normal distributions that can be used to propagate error and derivation of 
confidence intervals through the analysis and quantify in an uncertainty analysis. The confidence intervals represent 
uncertainty for a national scale application of the method, and so there may be additional uncertainty with application of 
this method at the entity scale that is not quantified. 

The fuel in cropland is the remaining residue biomass left in the field following harvest. To 
approximate the mass of the fuel combusted for crop residues, use equation 3-34. 

Equation 3-34: Mass of Fuel for Crop Residue 

𝐷𝐷 = [(𝑌𝑌 ÷ 𝐻𝐻𝐻𝐻) − 𝑌𝑌] × 𝐷𝐷𝐷𝐷 

Where: 
M = mass of fuel available for combustion (metric tons dry matter/ha) 
Y = crop harvest or forage yield (metric tons yield/ha) 
HI = harvest index: ratio of yield to aboveground biomass (yield + residue) 

(metric tons yield/metric tons biomass) 
DM = dry matter content of harvested crop biomass or forage 

(metric tons dry matter/metric tons biomass) 

The yield data are provided by the reporting entity. The harvest index and dry matter values can be 
found in table 3-33. If the cropland is burned before harvest, equation 3-34 can be used to 
approximate the mass of the fuel, which is then divided by the carbon fraction to convert the units 
into metric tons of dry matter/ha/year. 

The mass of fuel for trees in agroforestry, perennial tree crops, and shrub vegetation is based on 
the methods to estimate aboveground biomass in section 3.2.1.  

Combustion efficiency, as defined by IPCC (Aalde et al., 2006), is the proportion of biomass that is 
burned in a fire. Table 3-33 provides the combustion efficiencies for grazing lands and croplands. 

Table 3-33. Combustion Efficiencies (Proportions of Biomass Combusted) With 95-Percent 
Confidence Intervals in Parentheses 

Land Use Category Combustion 
Efficiency (Ce) Distribution Source 

Grazing land—early season burn 0.74 (0.37–1) Normal Aalde et al. (2006)a, i.e., IPCC Tier 
1 factors 

Grazing land—mid-late season burn 0.77 (0.26–1) Normal Aalde et al. (2006), i.e., IPCC Tier 1 
factors 

Cropland (residue)—small grains 0.90 (0.45–1) Normal Aalde et al. (2006)a, i.e., IPCC Tier 
1 factors 
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Land Use Category Combustion 
Efficiency (Ce) Distribution Source 

Cropland (residue)—row crops and 
other crops 0.80 (0.4–1) Normal Aalde et al. (2006)a, i.e., IPCC Tier 

1 factors 

Shrubs in grazing lands 0.95 (0.48–1) Normal Aalde et al. (2006)a, i.e., IPCC Tier 
1 factors 

Agroforestry/perennial tree crops 0.45 (0.28–0.61) Normal Aalde et al. (2006)b, i.e., IPCC Tier 
1 factors 

Probability density functions have a normal distribution that can be used to quantify uncertainty. The confidence 
intervals represent uncertainty for a national scale application of the method, and so there may be additional uncertainty 
with application of this method at the entity scale that is not quantified. 
a Aalde et al. (2006) do not provide uncertainty, so uncertainty has been assigned based on the authors’ expert opinion. 
b Aalde et al. (2006) do not provide values that are specific to agroforestry and perennial trees crops, so the authors 

chose the values for all “other” temperate forests for this chapter. This value that could be improved in the future 
through more specific data collection on burning efficiency in agroforestry and perennial tree crop stands. 

Emission factors are provided in table 3-34 for GHGs and precursors that form GHGs through 
various reactions in the atmosphere or biosphere by land use category. Emission factors include 
physical properties of the fuels. 

Table 3-34. Emission Factors for Biomass Burning With 95-Percent Confidence Intervals in 
Parentheses 

Parameter Emission Factor Value Distribution Source 

CH4 factor for grazing land (g 
CH4/kg) 2.3 (2.1–2.5) Normal Aalde et al. (2006), i.e., 

IPCC Tier 1 factors 

CH4 factor for cropland 
residue (g CH4/kg) 2.7 (1.35–2.84) Normal Aalde et al. (2006)a, i.e., 

IPCC Tier 1 factors 

CH4 factor for woody 
biomass (g CH4/kg) 4.7 (2.82–6.58) Normal Aalde et al. (2006)b, i.e., 

IPCC Tier 1 factors 

N2O factor for grazing land 
(g N2O/kg) 0.21 (0.01–0.40) Normal Aalde et al. (2006), i.e., 

IPCC Tier 1 factors 

N2O factor for cropland 
residue (g N2O/kg) 0.07 (0.04–0.11) Normal Aalde et al. (2006)a, i.e., 

IPCC Tier 1 factors 

N2O factor for woody 
biomass (g N2O/kg) 0.26 (0.19–0.33) Normal Aalde et al. (2006)b, i.e., 

IPCC Tier 1 factors 

Probability density functions have a normal distribution that can be used to quantify uncertainty. The confidence 
intervals represent uncertainty for a national scale application of the method, and so there may be additional uncertainty 
with application of this method at the entity scale that is not quantified. 
a Aalde et al. (2006) do not provide uncertainty, so uncertainty has been assigned based on authors’ expert opinion. 
b Aalde et al. (2006) do not provide values that are specific to agroforestry and perennial trees crops, so the authors 

chose the values for extra-tropical forests for this chapter. This value could be improved in the future through more 
specific data collection on emissions from agroforestry and perennial tree crop stands. 

See chapter 6 for methods to estimate non-CO2 GHG emissions from biomass burning in forest land 
if there is a land use conversion from forest land to cropland or grazing land. 
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3.2.8.2 Activity Data 
The following activity and related data are needed to apply the method: 

• Area burned for croplands and grazing land.
• Crop type and harvest yield data for crops grown in fields with residue burning

management.
• Amount of aboveground biomass before the fire in grazing lands based on the peak biomass

production and percentage of the biomass in the parcel relative to the peak biomass at the
time of the fire.

• Amount of aboveground woody biomass before the fire in agroforestry and perennial tree
crops, as well as aboveground shrub biomass in the land parcel.

In some years, the entity may not harvest the crop due to drought, pest outbreaks, or other reasons 
for crop failure. If residues are burned, the entity should provide the average yield that has been 
harvested for the specific crop over the past 5 years, along with an approximate percentage of 
average crop growth that occurred prior to burning. The mass of the fuel is estimated using 
equation 3-31, then multiplied by the proportion of crop growth that occurred prior to burning. 

3.2.8.3 Limitations and Uncertainty 
Use the explicit model-based method to estimate uncertainty for non-CO2 emissions from biomass 
burning (see chapter 8). Uncertainty is assumed to be minor for the management activity provided 
by the entity and related data, including crop yields, peak forage, and relative amount of crop or 
forage growth compared to the peak production, and therefore the values are assumed to be 
certain. Uncertainties in the emission factor and other parameters are provided in section 3.2.8.1, 
including mass of fuel for woody biomass, carbon fractions, dry matter contents, harvest indices, 
combustion efficiencies, and emission factors, and are propagated through the calculations using a 
Monte Carlo simulation. See chapter 8 for more information about the explicit model-based method. 

Although there is uncertainty in the emission estimates, there are no major limitations on the 
application of this method to all croplands and grazing lands in the United States. 

3.2.9 Carbon Dioxide From Urea Fertilizer Applications 

Box 3-14. Method for Estimating CO2 Emissions From Urea Fertilizer Application 
 This method uses the IPCC Tier 1 equation and emission factors developed by de Klein et al.

(2006).
 The entity provides specific annual parcel data on urea fertilizer addition as input into the

IPCC equation.

3.2.9.1 Description of Method 
The equation to estimate CO2 emissions from urea application has been adopted from the 
methodology developed by IPCC and uses the IPCC default emission factor (de Klein et al., 2006) 
(see appendix 3A.10 for rationale). Use equation 3-35 to estimate the annual CO2 emission from a 
land parcel where urea-based fertilizers have been applied. 
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Equation 3-35: Annual CO2 Emissions From Urea Fertilization 

𝐶𝐶𝐼𝐼𝑚𝑚𝑝𝑝𝑏𝑏 = 𝐷𝐷 × 𝐸𝐸𝐹𝐹 × CO2MW 

Where: 
Curea = annual release of carbon from urea added to the soil (metric tons CO2-eq) 
M = annual amount of urea fertilization (metric tons of urea) 
EF = emission factor, based on the proportion of carbon in urea 

(metric tons CO2-C/metric tons urea) 
CO2MW = ratio of molecular weight of CO2 to carbon = 44/12 

(metric tons CO2/metric tons C) 

The amount of urea fertilization is provided by the reporting entity, and the emission factor for 
urea fertilization is in the table below. 

Table 3-35. CO2 Emission Factor From Urea Fertilization With 95-Percent Confidence 
Interval in Parentheses 

Emission Factor Distribution Data Source 

Urea fertilization 
(metric tons CO2-C/metric 
ton urea)  

0.20 (0.10–0.20) Triangle de Klein et al. (2006), 
i.e., IPCC Tier 1 factors

Probability density functions have a triangular distribution that can be used to quantify uncertainty. The confidence 
intervals represent uncertainty for a national scale application of the method, and so there may be additional uncertainty 
with application of this method at the entity scale that is not quantified. 

3.2.9.2 Activity Data 
This method requires data on the amount of urea fertilizer applied to soils. Any fertilizer containing 
urea should be included, such as urea ammonium nitrate, but the mass is based on the portion that 
is urea. 

3.2.9.3 Limitations and Uncertainty 
Use the explicit model-based method to estimate uncertainty for CO2 emissions from urea 
application to soils (see chapter 8). Uncertainty is assumed to be minor for the management activity 
data provided by the entity, i.e., the amount of urea applied to soils, and therefore the values are 
assumed to be certain. Uncertainty in the emission factor is provided in table 3-35 of chapter 3 and 
is propagated through the calculations using a Monte Carlo simulation. See chapter 8 for more 
information about the explicit model-based method. 

Although there is uncertainty, there are no major limitations on the application of this method to all 
croplands and grazing lands in the United States. 
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Appendix 3-A: Method Documentation 

3-A.1 Biomass Carbon Stock Changes

3-A.1.1 Rationale for Method
Both IPCC (Ogle et al., 2019b) and the U.S. EPA (2020) consider herbaceous biomass carbon stocks 
to be ephemeral and recognize that there are no net emissions to the atmosphere following crop 
growth and senescence during one annual crop cycle (West et al., 2011). However, with respect to 
changes in land use (e.g., forest to cropland), IPCC (Ogle et al., 2019b) recommends that cropland 
biomass be counted in the year that land conversion occurs, and the same assumption also applies 
for grassland (McConkey et al., 2019). According to IPCC, estimating the herbaceous biomass 
carbon stock during changes in land use is necessary to quantify the influence of herbaceous plants 
on CO2 uptake from the atmosphere and storage in the terrestrial biosphere. However, this method 
does not recognize changes in herbaceous biomass that occur with changes in crop rotations, nor 
does it recognize long-term increases in annual crop yields. The method in this chapter is 
considered a Tier 2 method as defined by IPCC because it incorporates factors that are based on 
U.S.-specific data and differs from the methodology in U.S. EPA (2020) because of this.

Agroforestry (along with other woody vegetation in croplands, such as orchards and vineyards) can 
sequester significant amounts of new carbon within long-lived biomass over time with woody plant 
growth. A measurement-based method has been selected for entity-scale reporting of biomass 
carbon stock changes in croplands and grazing lands due to limited data availability on agroforestry 
stands and other woody crops and shrubs. Well-established methods for estimating the woody 
biomass in forest landscapes are described in chapter 5. These methods form the basis for 
estimating woody biomass in croplands and grazing lands but were modified to fit an agricultural 
context. A combination of Tier 1 and 3 methods using entity-specific data is recommended for 
estimating the carbon stock changes associated with agroforestry and woody crops.  

3-A.1.2 Technical Documentation
The aboveground biomass estimation for trees relies on a dbh-based allometric equation derived 
from a meta-analysis of 2,928 biomass equations for trees in the United States (Chojnacky et al., 
2014). Equation parameters are available for 13 conifer, 18 hardwood, and 4 woodland taxa, 
representing 129 tree species (table 3A-1). Table 3A-1, table 3A-2, and table 3A-3 provide the 
species associated with the 35 taxon groups. This forest-based approach will likely produce 
conservative (underestimated) values of carbon stocks and stock changes in cropland and grazing 
lands since trees in windbreaks and other more open plantings have been documented to have 
greater live biomass than predicted by forest-based allometric equations (Zhou et al., 2015). 
Belowground biomass is estimated based on a ratio of root component biomass to total 
aboveground biomass (Chojnacky et al., 2014). Increased partitioning of biomass carbon to roots is 
observed in open-grown trees (Ritson and Sochacki, 2003), so forest-based approaches will give 
conservative (underestimated) values for this component. This approach is a considered a Tier 3 
method as defined by IPCC because it involves measurement of aboveground biomass. 

Since allometric equations for nontree woody species, i.e., shrubs and vineyards, are not available, 
regional Tier 1 defaults are used to estimate woody biomass for these species’ groups (Ogle et al., 
2019b). For shrubs, the temperate hedgerow default for North America was used to establish a 
carbon accumulation rate of 0.00128 metric tons/shrub/year for up to 30 years, after which 
additional carbon is not expected. For vines (e.g., grapes), use the temperate domain default for an 



Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems 

3-92

aboveground biomass accumulation rate of 0.28 tons C/ha/year over a 20-year period. This method 
is a considered a Tier 1 method as defined by IPCC. Belowground biomass for vineyards is not 
estimated.  

Although litter and woody debris are important components in forests, they are generally minor 
components in agroforestry and thus are not considered in this method (Schoeneberger et al., 
2017). 

Table 3A-1. Thirteen Taxon Groupings for 45 Conifer Species (or Species Groups) 

Taxon Genus and Species Common Name 

Abies < 0.35 spga 
Abies balsamea Fir, balsam 
A. fraseri Fir, Fraser 
A. lasiocarpa Fir, subalpine 

Abies ≥ 0.35 spg 

A. amabilis Fir, Pacific silver 
A. concolor Fir, white 
A. grandis Fir, grand 
A. magnifica Fir, California red 
A. procera Fir, noble 
Abies spp. Fir, Pacific silver/noble/other 

Cupressaceae < 0.30 spg Thuja occidentalis Cedar, northern white 

Cupressaceae 0.30–0.39 spg 
Calocedrus decurrens Incense cedar 
Sequoiadendron giganteum Sequoia, giant 
T. plicata Cedar, western red 

Cupressaceae ≥ 0.40 spg 
Chamaecyparis nootkatensis Cedar, Alaska 
Juniperus virginiana Juniper, eastern redcedar 

Larix 
Larix laricina Tamarack 
L. occidentalis Tamarack, western larch 
Larix spp. Tamarack, larch (introduced) 

Picea < 0.35 spg 
Picea engelmannii Spruce, Engelmann 
P. sitchensis Spruce, Sitka 

Picea ≥ 0.35 spg 

P. abies Spruce, Norway 
P. glauca Spruce, white 
P. mariana Spruce, black 
P. rubens Spruce, red 

Pinus < 0.45 spg 

Pinus albicaulis Pine, whitebark 
P. arizonica Pine, Arizona 
P. banksiana Pine, jack 
P. contorta Pine, lodgepole 
P. jeffreyi Pine, Jeffrey 
P. lambertiana Pine, sugar 
P. leiophylla Pine, Chihuahua 
P. monticola Pine, western white 
P. ponderosa Pine, ponderosa 

Abies < 0.35 spga

Abies ≥ 0.35 spg

Cupressaceae 0.30–0.39 spg

Larix

Picea ≥ 0.35 spg

Pinus < 0.45 spg
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Taxon Genus and Species Common Name 

P. resinosa Pine, red 
Pinus spp. Pine, ponderosa/lodgepole/sugar 
P. strobus Pine, eastern white 

Pinus ≥ 0.45 spg 

P. echinata Pine, shortleaf 
P. elliottii Pine, slash 
P. palustris Pine, longleaf 
P. rigida Pine, pitch 
P. taeda Pine, loblolly 

Pseudotsuga Pseudotsuga menziesii Douglas fir 
Tsuga < 0.40 spg Tsuga canadensis Hemlock, eastern 

Tsuga ≥ 0.40 spg 
T. heterophylla Hemlock, western 
T. mertensiana Hemlock, mountain 

Source: Chojnacky et al., 2014. 
a spg = specific gravity of wood on a green volume to dry-weight basis. 

Table 3A-2. Eighteen Taxon Groupings for 70 Hardwood Species (or Species Groups) 

Taxon Family Genus and Species Common Name 

Aceraceae < 0.50 spga 

Aceraceae Acer macrophyllum Maple, bigleaf 
Aceraceae A. pensylvanicum Maple, striped 
Aceraceae A. rubrum Maple, red 
Aceraceae A. saccharinum Maple, silver 
Aceraceae A. spicatum Maple, mountain 

Aceraceae ≥ 0.50 spg Aceraceae A. saccharum Maple, sugar 

Betulaceae < 0.40 spg 
Betulaceae Alnus rubra Alder, red 
Betulaceae Alnus spp. Alder, Sitka 

Betulaceae 0.40–0.49 spg 
Betulaceae Betula papyrifera Birch, paper 
Betulaceae B. populifolia Birch, gray 

Betulaceae 0.50–0.59 spg Betulaceae B. alleghaniensis Birch, yellow 

Betulaceae ≥ 0.60 spg 
Betulaceae B. lenta Birch, sweet 
Betulaceae Ostrya virginiana Hophornbeam 

Cornaceae/Ericaceae/ 
Lauraceae/Platanaceae/ 
Rosaceae/Ulmaceae  

Cornaceae Cornus florida Dogwood 
Cornaceae Nyssa aquatica Tupelo, water 
Cornaceae N. sylvatica Tupelo, blackgum 
Ericaceae Arbutus menziesii Madrone, Pacific 
Ericaceae Oxydendrum arboreum Sourwood 
Ericaceae Umbellularia californica California bay laurel 
Lauraceae Sassafras albidum Sassafras 
Platanaceae Platanus occidentalis Sycamore 
Rosaceae Amelanchier spp. Serviceberry 
Rosaceae Prunus pensylvanica Cherry, pin 
Rosaceae P. serotina Cherry, black 

Pinus < 0.45 spg

Pinus ≥ 0.45 spg

Aceraceae < 0.50 spga

Cornaceae/Ericaceae/
Lauraceae/Platanaceae/
Rosaceae/Ulmaceae
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Taxon Family Genus and Species Common Name 

Rosaceae P. virginiana Cherry, chokecherry 
Rosaceae Sorbus americana Sorbus, mountain ash 
Ulmaceae Ulmus americana Elm 
Ulmaceae Ulmus spp. Elm 

Fabaceae/Juglandaceae, Carya 
Juglandaceae Carya illinoinensis Pecan 
Juglandaceae C. ovata Hickory, shagbark 
Juglandaceae Carya spp. Hickory 

Fabaceae/Juglandaceae, other Fabaceae Robinia pseudoacacia Locust, black 

Fagaceae, deciduous 

Fagaceae Castanea dentata Chestnut, American 
Fagaceae Fagus grandifolia Beech 
Fagaceae Quercus alba Oak, white 
Fagaceae Q. coccinea Oak, scarlet 
Fagaceae Q. ellipsoidalis Oak, pin 
Fagaceae Q. falcata Oak, red southern 
Fagaceae Q. macrocarpa Oak, bur 
Fagaceae Q. nigra Oak, water 
Fagaceae Q. prinus Oak, chestnut 
Fagaceae Q. rubra Oak, red northern 
Fagaceae Quercus spp. Oaks 
Fagaceae Q. stellata Oak, post 
Fagaceae Q. velutina Oak, black 

Fagaceae, evergreen 

Fagaceae Chrysolepis chrysophylla Chinkapin, golden 
Fagaceae Lithocarpus densiflorus Tanoak 
Fagaceae Q. douglasii Oak, blue 
Fagaceae Q. laurifolia Oak, laurel 
Fagaceae Q. minima Oak, dwarf live 

Hamamelidaceae Hamamelidaceae Liquidambar styraciflua Sweetgum 

Hippocastanaceae/Tiliaceae 

Hippocastanaceae Aesculus flava Aesculus, yellow 
buckeye  

Tiliaceae Tilia americana Basswood 

Tiliaceae T. americana. var.
heterophylla Basswood, white 

Magnoliaceae 
Magnoliaceae Liriodendron tulipifera Tulip poplar 
Magnoliaceae Magnolia fraseri Magnolia, Fraser 
Magnoliaceae M. virginiana Magnolia, sweetbay 

Oleaceae < 0.55 spg 
Oleaceae Fraxinus nigra Ash, black 
Oleaceae F. pennsylvanica Ash, green 
Oleaceae Fraxinus spp. Ash 

Oleaceae ≥ 0.55 spg Oleaceae F. americana Ash, white 

Cornaceae/Ericaceae/
Lauraceae/Platanaceae/
Rosaceae/Ulmaceae

Fagaceae, deciduous

Fagaceae, evergreen
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Taxon Family Genus and Species Common Name 

Salicaceae < 0.35 spg 

Salicaceae Populus balsamifera Populus, balasm poplar 

Salicaceae P. balsamifera. ssp.
trichocarpa

Populus, black 
Cottonwood  

Salicaceae Populus spp. Populus, cottonwood 

Salicaceae ≥ 0.35 spg 

Salicaceae P. deltoides Populus, cottonwood 
eastern  

Salicaceae P. grandidentata Populus, aspen bigtooth 
Salicaceae Populus spp. Populus, cottonwood 
Salicaceae P. tremuloides Populus, aspen quaking 
Salicaceae Salix alba Willow, white 
Salicaceae Salix spp. Willow 

Source: Chojnacky et al., 2014. 
a spg = specific gravity of wood on a green volume to dry-weight basis. 

Table 3A-3. Four Taxon Groupings for 15 Woodland Species (or Species Groups) 

Taxon Family Genus and Species Common Name 

Cupressaceae 

Cupressaceae Cupressus spp. Cypress, pygmy 
Cupressaceae Juniperus monosperma Juniper, oneseed 
Cupressaceae J. occidentalis Juniper, western 
Cupressaceae J. osteosperma Juniper, Utah 

Fabaceae/Rosaceae 

Fabaceae Cercidium microphyllum Paloverde, yellow 
Fabaceae Prosopis spp. Mesquite 
Rosaceae Cercocarpus ledifolius Mountain mahogany 
Rosaceae C. montanus. var. pauciden Mountain mahogany 

Fagaceae 

Fagaceae Quercus douglasii Oak, blue 
Fagaceae Q. gambelii Oak, Gambel 
Fagaceae Q. hypoleucoides Oak, silverleaf 
Fagaceae Quercus (live) spp. Oak, evergreen spp. 

Pinaceae 
Pinaceae Pinus cembroides Pine, pinyon 
Pinaceae P. edulis Pine, pinyon 
Pinaceae P. monophylla Pine, pinyon singleleaf 

Source: Chojnacky et al., 2014. 

3-A.2 Soil Carbon Stock Changes

3-A.2.1 Rationale for Method
The Tier 3 method using the DayCent model is selected for estimating SOC stock changes on 
mineral soils because it has been well-tested and demonstrated to represent SOC dynamics in U.S. 
croplands and grazing lands for application in an operational tool to estimate SOC stock changes in 
mineral soils (Parton et al., 1987, 1993). In addition, uncertainties have been fully quantified using 
an empirical method with data that have not been used to parameterize the model (U.S. EPA, 2020; 
Ogle et al., 2007). Moreover, Del Grosso et al. (2011) demonstrated a significant reduction in 
uncertainty associated with the more advanced approach using the DayCent model compared to the 

Salicaceae ≥ 0.35 spg

Cupressaceae

Fabaceae/Rosaceae

Fagaceae
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lower tier methods for U.S. agricultural lands. While uncertainties are reduced with these methods 
compared to lower tier methods, this does not imply that these methods are perfect estimators. 
There are larger uncertainties, particularly at the parcel scale, and as discussed in appendix 3B, 
there are still knowledge and data gaps that need to be filled to improve the methods, and reduce 
uncertainties. 

The DayCent model captures key processes, land use, and management practices that are driving 
SOC stock changes in U.S. agricultural lands. The model represents the influence of soil moisture 
dynamics, plant production, and thermal controls on net primary production and decomposition 
with a time step of a month or less. The model captures most land use and management impacts on 
cropland and grazing land systems, as well as conversion from other land uses into these systems 
(Paustian et al., 2016). SOC pools can be modified due to changes in carbon inputs and outputs 
(Paustian et al., 1997), and the change in inputs over time due to interannual variability and longer 
term trends in net primary production, as well as differences in carbon removals from harvesting 
and residue management practices. External carbon inputs will also have an influence on the SOC 
stocks, such as manure, compost, sewage sludge, wood chips, and biochar amendments. DayCent 
can represent the influence of these practices, with the exception of biochar. Consequently, another 
model has been selected for representing the influence of biochar amendments on mineral SOC 
stock changes. Carbon outputs will change due to interannual variability and longer term trends in 
microbial decomposition rates, and is influenced by practices such as tillage management, which 
are also addressed in the DayCent model framework. The DayCent model has also been improved 
for modeling SOC stock changes using a Bayesian calibration method (Gurung et al., 2020). 

The Tier 3 method is not applied to all U.S. agricultural lands because the model lacks the structure 
or has not been adequately tested for certain soils types and crops, which includes several crops; 
mineral soils that are very gravelly, cobbly, or shaley (more than 35 percent coarse fragments by 
volume); and organic soils (i.e., Histosols) (see figure 3-2 for more information). In these cases, a 
Tier 2 method is applied to estimate the SOC stock changes using country-specific stock change 
factors for most management practices on mineral soils and country-specific emission factors for 
organic soils. This method has been developed specifically for conditions in the United States and is 
used in the U.S. GHG Inventory (U.S. EPA, 2020; Ogle et al., 2003, 2006). 

The biochar model is based on accounting for inputs and outputs. The model is grounded in 
empirical data using recent meta-analyses to ensure that it is representative of current data. No 
well-calibrated process model exists at this time, and so a method developed by IPCC was chosen 
for this chapter (Ogle et al., 2019a). The IPCC approach (Ogle et al., 2019a) has been adapted for 
reporting in the United States using material properties (namely the molar ratio of hydrogen to 
organic carbon, H:Corg) rather than the pyrolysis temperature (Woolf et al., 2021). Material 
properties provide better predictions and monitoring of biochar quality. The values for carbon 
fraction of biochar (FC) have also been updated from the IPCC biochar method to incorporate 
additional publications (Woolf et al., 2021). The equation to predict biochar persistence is based on 
both laboratory and field experiments and is consistent with long-term (centennial and millennial) 
dynamics of natural biochar materials (Bird et al., 2015; Ogle et al., 2019a; Lehmann et al., 2021; 
Bowring et al, 2022). Short-term data will tend to underestimate rather than overestimate 
persistence (Lehmann et al., 2015; Wang et al., 2016), making an empirical model that includes data 
from incubations and field trials conservative. Furthermore, meta-analyses have consistently shown 
that the addition of biochar on average decreases rather than increases the mineralization of native 
SOC, on the order of a 4-percent decrease (e.g., Wang et al., 2016; Ding et al., 2018), in the 
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long term. Thus, exclusion of the impact of biochar on native SOC is conservative for estimating the 
influence of biochar on SOC stock changes.  

3-A.2.2 Technical Documentation
SOC stocks change at relatively slow rates from current land use and management activity and 
integrate effects over time from a variety of land use and management practices as well as other 
environmental drivers. There can also be a strong influence of past land use and management, and 
some practices such as biochar amendments can lead to long-term carbon storage in soils over 
centuries. This section provides more information about the models that are used to capture the 
influence of entity-scale management on SOC stock changes. 

Tier 3 method for mineral soils: The DayCent model simulates plant production by representing 
long-term effects of land use and management on net primary production (NPP), as influenced by 
selection of crops and forage grasses. The influence of management practices on NPP is also 
simulated, including mineral fertilization, organic amendments, irrigation, fertigation, liming, green 
manures, cover crops, cropping intensity, hay or pasture in rotation with annual crops, grazing 
intensity based on stocking rate, and bare fallow. Nutrient and moisture dynamics are influenced by 
soil characteristics, such as soil texture. The method addresses interannual variability due to annual 
changes in management and the effect of weather on NPP. 

In the DayCent model, three SOC pools are included representing active, slow, and passive soil 
organic matter, which have different turnover times. It is generally considered that the active 
carbon pool is microbial biomass and associated metabolites having a rapid turnover (months to 
years), the slow carbon pool has intermediate stability and turnover times (decades), and the 
passive carbon pool represents highly processed and humified decomposition products with longer 
turnover times (centuries). However, these pools are kinetically defined and do not necessarily 
represent explicit fractions of SOC that can be isolated in a laboratory. Soil texture, temperature, 
moisture availability, aeration, burning, and other factors are represented in the simulations that 
influence the decomposition and loss of carbon from these pools. The model also captures 
interannual variability in decomposition of SOC related to weather patterns. 

The model simulates management practices influencing SOC pools. These practices include addition 
of carbon in manure and other organic amendments, such as compost, wood chips, and biochar; 
tillage intensity; residue management (retention of residues in field without incorporation, 
retention in the field with incorporation, and removal with harvest, burning, or grazing). The 
influence of bare and vegetated fallows is represented, in addition to irrigation effects on 
decomposition in cropland and grazing land systems. The model can also simulate setting aside 
cropland from production, as well as various grazing management regimes related to specific 
timing of grazing and intensity. 

A water/soil moisture submodel (e.g., Parton et al., 1987) is used to represent the influence of 
weather, irrigation, crop type, and management on soil moisture dynamics. This impact is 
particularly important because moisture tends to be a more proximal factor controlling SOC 
dynamics, which, in turn, is influenced by land use and management activity. For example, 
irrigation influences SOC stocks because irrigation influences the moisture regime, which in turn 
influences plant production and carbon inputs to the soil. See Ogle et al. (2010) and U.S. EPA (2020) 
for more documentation on this method. 

Tier 2 method for mineral soils: The Tier 2 method is not a dynamic model, as represented by 
DayCent, but rather an empirical method that represents linear changes in SOC stocks over 20-year 
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periods. Statistical models have been developed to represent the influence of land use, 
management, and carbon input on SOC stock changes (Ogle et al., 2003, 2006). Each of these three 
variables is represented by discrete categories, such as high, medium, and low carbon input, and a 
carbon stock change factor is estimated for changes among categories using the statistical model. 
Variability in climate and soils is addressed with different factors for reference carbon stocks and 
the stock change factors, but these factors are fixed across time so they do not represent 
interannual variability, particularly as related to weather. However, this method is considered more 
general, and can be applied in circumstances in which the DayCent model has not been tested. See 
Ogle et al. (2003, 2006) and U.S. EPA (2020) for more documentation on this method. 

Biochar amendments to mineral soils: The carbon content of biochar depends on feedstock 
properties (namely the carbon properties and the ash content) as well as the conditions of 
conversion (namely the pyrolysis temperature, time, and pressure). The carbon concentration of 
biochar (FC) was calculated from regressions by Neves et al. (2011) and corrected for ash content 
using biochar yield from Woolf et al. (2014). Data on ash, lignin, and carbon content of biomass 
feedstocks, which are parameters in these regression equations, were taken from ECN (2021). 
Biochar persistence was calculated using the relationship between biochar properties and 
mineralization applying the same criteria as in Ogle et al. (2019a). The H:Corg ratio is strongly 
correlated with the degree of fused aromatic ring structures (Bird et al., 2015; Knicker, 2007; Singh 
et al., 2012), and therefore with the ability of microorganisms to mineralize organic matter 
(Knicker, 2007; Lehmann et al., 2015). Mineralization experiments were taken from studies that 
used at least 1 year of replicated data with sufficient measurements over the experimental period 
to develop a double-exponential model. The rate constants were converted to 10.9 °C (Woolf et al., 
2021), which is the mean annual air temperature of cropland in the United States. The mean air 
temperature was estimated based on the spatial mean of WorldClim 2.1 data (Fick and Hijmans, 
2017) over the distribution of cropland in the United States according to Ramankutty et al. (2008). 
The rate constants were based on using temperature responses with Q10 as a function of incubation 
temperature according to the equation 𝑄𝑄10 = 1.1 + 12𝑇𝑇−0.19𝑇𝑇  (Lehmann et al., 2015). The Fperm 
factor is derived from the relationship between H:Corg ratios of biochars and mineralization (figure 
3A-1), using the sources cited beneath the figure.  

Organic soils: Drainage of organic soils for crop production leads to net annual emissions due to 
increased decomposition of the organic matter after lowering the water table and creating aerobic 
conditions in the upper layers of the soil (Allen, 2012; Armentano and Menges, 1986). There has 
been less evaluation of process-based models for organic soils, particularly the simulation of water 
table dynamics throughout the year, which influences the emission rate. The method incorporates 
U.S. emission rates associated with region-specific drainage patterns (Ogle et al., 2003), so it is a 
Tier 2 method as defined by IPCC (Ogle et al., 2019a). See Ogle et al. (2003) and U.S. EPA (2020) for 
more documentation on this method. 
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Mineralization rates adjusted to 10.9 °C.  
Cumulative mineralization data (only studies with at least 1 year of data were included) were fit with a double 
exponential model (a triple exponential model for Herath et al., 2015, as shown in the original article). 
Sources: Major et al., 2010; Zimmerman, 2010; Singh et al., 2012, 2015; Zimmerman and Gao, 2013; Fang et al., 2014, 
2019; Herath et al., 2015; Dharmakeerthi et al., 2015; Budai et al., 2016; Wu et al., 2016; Liu et al., 2020. 

Figure 3A-1. Relationship Between the H:Corg Ratios of Biochars and Mineralization 

3-A.3 Soil Nitrous Oxide 

3-A.3.1 Rationale for Method 
N2O fluxes are difficult to measure due to the labor required to sample emissions, combined with 
high spatial and temporal variability. Agronomic practices that affect N2O fluxes in a soil, climate, or 
site-year may have little or no measurable effect in others. Consequently, considerable care is 
required to ensure that methods to estimate changes in emissions for a particular cropping practice 
are accurate and robust for the geographic region for which they are proposed or are sufficiently 
generalizable to be accurate in aggregate. There are two methods that are most commonly applied 
for estimating soil N2O emissions, including empirical approaches that rely on statistical modeling 
or derivation of emission factors, and process-based models that rely on mechanistic frameworks 
for simulating production, water flows, temperature regimes and soil organic matter dynamics in 
order to predict N2O emissions from nitrification and denitrification (Chen et al., 2008; Del Grosso 
et al., 2010). A key advantage of simulation models is that they are generalizable to a wide variety of 
soils, climates, and cropping systems, allowing factors to interact in complex ways that may be 
difficult to predict with less sophisticated approaches.  
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Model testing was conducted to evaluate the performance of a Tier 3 method using the DayCent 
process-based model (Parton et al., 1998; Del Grosso et al., 2005), relative to the IPCC Tier 1 
method and 2014 USDA entity-scale reporting method (Ogle et al., 2014). Selected sites were 
compared based on the following criteria: a) data must be produced from a field experiment, b) 
required sufficient frequency and intensity of measurements to estimate annual N2O emissions, and 
c) the experiment had not been used to calibrate the DayCent model to ensure an independent
evaluation of the methods. The dataset included 7 sites with 62 observations of soil N2O emissions 
(table 3A-4). This is a relatively small dataset, highlights the need for more experiments and 
monitoring of N2O emissions to independently evaluate models and methods.  

Table 3A-4. Sites With N2O Observations Used for Model Evaluation and Comparisons 

Site and Reference Treatments Years Crop(s) N Rate kg 
N/ha 

Fort Collins, CO 

Halvorson et al. 2016 

N fertilization rate and 
fertilizer type (manure, 

urea, SuperU) 
2012–2013 Corn 0–480 

Bozeman, MT 

Dusenbury et al. 2008 
Tillage, crop rotation 

and N fertilization rate 2004–2005 Winter wheat/spring pea 0–150 

Elora, Ontario 

Meyer-Aurich et al. 2004 
Tillage by N fertilization 

rate 2000–2004 Corn/soybean/winter wheat 0–150 

Glenlea, Manitoba 

Maas et al. 2013 
Tillage and crop 

rotation 2006–2011 Corn, alfalfa, spring wheat, 
rapeseed, barley 0–146 

Ottawa, Ontario 

Sansoulet et al. 2014 
Recommended N 
fertilization rate 2007 Spring wheat 60–78 

Edinburgh, Scotland 

Clayton et al. 1997 
Unfertilized grassland 1992 Ryegrass 0 

Fendt, Bavaria 

Lu et al. 2016 
Extensive and intensive 

grassland systems 2012–2013 Grass legume 61–365 

The model estimates are compared to the observed soil N2O emissions from the experimental sites 
using several metrics, including the root mean square error (RMSE), mean difference between 
observations and model estimates, and fitting a linear regression model to estimate the relationship 
between the observations and model estimates. The RMSE provides an inference on the level of 
precision in the modeled estimates and the mean difference provide an inference on average bias in 
the model estimates. The regression fit provides inference on the accuracy of the relationship 
between modeled and observed emissions. The fitted regression line closer to the 1:1 reference line 
in addition to a lower r2 value represents a more accurate model for estimating soil N2O emissions. 

The Tier 3 DayCent model and IPCC Tier 1 method have closer agreement with annual N2O 
emissions derived from observational datasets than the 2014 USDA entity-scale reporting method 
(figure 3A-2, table 3A-5). The DayCent model has the lowest RMSE, followed by the IPCC method 
and the 2014 USDA entity-scale reporting method. The IPCC method has the lowest bias on average 
according to the mean difference statistic, followed by the 2014 USDA entity-scale reporting 
method, and the DayCent model.  
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The fitted regression line for the DayCent model is closer to the reference line and has the lowest r2 
value for the fit to the observed emissions, followed by the IPCC method and the 2014 USDA entity-
scale reporting method. Moreover, the fitted regression line for the 2014 USDA entity-scale 
reporting method has a relatively flat slope, which implies no relationship between observed and 
predicted emissions. 

These comparisons show that the 2014 USDA entity-scale reporting method produces considerably 
higher estimates of soil N2O emissions with higher fertilization rates, compared to the other two 
methods. This is not surprising given the goal to represent an exponential increase in N2O 
emissions when N fertilization rates exceed the amount needed by the crop (Shcherbak et al. 2014). 
However, the method does not rank highest on any of the evaluation statistics. The IPCC method 
ranks the highest based on the mean square difference, but otherwise the DayCent model has the 
best fit to these data given the RMSE and regression fit.   

The DayCent model was selected as the method for estimating soil N2O emissions given the higher 
accuracy suggested by the regression fit. Furthermore, DayCent has been used for U.S. national 
reporting of soil N2O emissions to the United Nations Framework Convention on Climate Change for 
more than a decade (e.g., U.S. EPA, 2020), and selecting this model ensures consistency between 
national and entity-scale reporting. Regardless, there is a need for further advances in modeling soil 
N2O emissions is needed to improve accuracy in reporting of emissions, such as modeling of 
emissions associated with variation in fertilizer rates (e.g., Shcherbak et al. 2014), types of fertilizer, 
and timing of applications.  

Table 3A-5. RMSE, Mean Difference, and Linear Regression Slope for Model Comparison to 
Observed Annual Emissions 

Model RMSE Mean Difference Regression 
Intercept 

Regression 
Slope r2 

IPCC Tier 1 method 104% 0.03 1.06 0.41 0.03 
2014 USDA method 205% 0.32 1.72 0.04 < 0.01 
DayCent Model 93% 0.48 0.22 0.70 0.28 
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The solid line is a reference for the 1:1 relationship in which the modeled and observed emissions would be equal. The 
dashed line is a linear regression fit showing the actual relationship between modeled and observed emissions. There are 
two additional estimates of N2O emissions from the USDA method that are beyond 20 kg N2O-N/ha/year and not included 
in the graph; none of the measured emissions exceed 10 kg N2O-N/ha/year. 

Figure 3A-2. Comparison of Modeled and Observed Annual N2O Emissions for DayCent, IPCC, 
and 2014 USDA Entity-Scale Reporting Methods  

The DayCent process-based model is the emissions estimator for most major commodity crops, 
grazing lands, and most soil types (figure 3A-2). The crops include alfalfa hay, barley, corn, cotton, 
grass hay, grass-clover hay, oats, peanuts, potatoes, rice, sorghum, soybeans, sugar beets, 
sunflowers, tobacco, and wheat. In addition, DayCent can be applied in most mineral soils, except 
very gravelly, cobbly, or shaley soils.24 However, DayCent does not have the underlying model 

24 Classified as soils whose volume is more than 35 percent gravel, cobbles, or shale. 
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structure to estimate emissions for organic soils (i.e., Histosols), and the model has not been 
adequately tested and therefore is not currently applied to other crops and soil types. The IPCC Tier 
1 method has been chosen for application in all other croplands and grazing lands to ensure that 
the method in this chapter provides a complete coverage of agricultural lands in the United States.  

Adoption of DayCent as the primary model also allows for consistent simulation of carbon and 
nitrogen cycles for reporting of SOC stock changes and soil N2O emissions (see section 3.2.4 for 
more information about the SOC methods). Carbon and nitrogen cycles are linked in plant-soil 
systems through biogeochemical processes of microbial decomposition and plant production 
(McGill and Cole, 1981); applying the same model to both sources ensures consistency in the 
treatment of the processes and the resulting carbon and nitrogen dynamics.  

For the IPCC method, scaling factors estimated from available research are included for several 
specific management practices—slow-release fertilizers and nitrification inhibitors, no-till 
management, and biochar applications. The scaling factors enhance the ability of Tier 1 method to 
accurately estimate emissions, including capturing management practices that mitigate N2O 
emissions from soils. The scaling factor for biochar applications is also applied to the DayCent 
model predicted N2O fluxes.  

3-A.3.2 Technical Documentation 
Soil N2O emissions are affected by specific farm management practices, particularly nitrogen 
management practices such as adding nitrification inhibitors or changing how, when, and where 
nitrogen fertilizers are applied. To account for the effect of management practices on N2O emission, 
the DayCent process-based model represents the practices as part of its framework, such as 
routines to estimate the influence of slow-release polymer-coated fertilizers and nitrification 
inhibitors on soil N2O emissions (Gurung et al. 2021).  

In contrast, the IPCC Tier 1 method mainly addresses the effect of fertilizer rate on N2O emissions, 
which is important but not the only impact of management on N2O emissions. Consequently, 
management practice scaling factors were derived to allow for adjustments in the emissions and 
better represent the influence of key practices. Scaling factors were estimated from available 
research data. Management practices other than those included in the equation may also mitigate 
N2O emissions, but data are currently insufficient to create generalized scaling factors. More data 
may lead to their inclusion in future updates to the method. 

Offsite or indirect N2O emissions, which occur when reactive nitrogen escapes to downwind or 
downstream ecosystems where favorable conditions for N2O production exist, are even more 
difficult to estimate than direct emissions because there is uncertainty in both the amount of 
reactive nitrogen that escapes and the portion of this nitrogen that is converted to N2O. Ideally, 
fluxes of volatile and soluble reactive nitrogen leaving the entity’s parcel of land would be 
combined with atmospheric transport and hydrologic models to simulate the fate of reactive 
nitrogen. At present there are no linked modeling approaches sufficiently tested to be used in an 
operational framework. Consequently, the indirect N2O emissions are calculated by applying IPCC 
Tier 1 indirect emission factors to the amounts of reactive nitrogen leached or volatilized 
(Hergoualc’h et al., 2019). 

Similarly, direct N2O emissions from drainage of organic soils are based on the IPCC Tier 1 methods 
(de Klein et al., 2006; Drösler et al., 2013). Although research is ongoing to provide improved 
emission factors and methods for estimating N2O emissions from drainage of organic soils (Allen, 



Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems 

3-104 

2012), more testing will be needed before they can be incorporated into an operational method. 
Future revisions to these methods will need to consider advancements. 

3-A.4 Management Practice-Based Scaling Factors 
Data were analyzed to derive scaling factors for the following practices: nitrification inhibitors, 
slow-release fertilizers, and biochar amendments. Scaling factors for nitrification inhibitors and 
slow-release fertilizers were derived using a linear mixed-effect modeling approach (Pinheiro and 
Bates, 2000), similar to the method used by Ogle et al. (2007) to derive factors that were used in the 
2019 IPCC Guidelines (Ogle et al., 2019b). Variances associated with individual experimental results 
were not taken into consideration in the meta-analyses because many studies do not provide this 
information. A goal for future analyses supporting the USDA methods will be to include variances, 
under the assumption that studies will report this information in future publications. Covariates 
were included in the analysis to determine if the practice had a different effect depending on the 
land use, climate, soil type, water management, tillage practice, or crop type. Covariates were 
retained in the model if the variable was significant at an alpha level of 0.05. A 95-percent 
confidence interval was derived for each scaling factor and provided in table 3-17 as an upper and 
lower bound on the estimated factor.  

The meta-analysis of biochar influence on N2O emissions was based on a subset of the data from a 
recently published meta-analysis (Borchard et al., 2019), filtered to include only results from field 
experiments, i.e., excluding pot trials or incubations which are typically not representative of field 
conditions. These filtered data included a total of 112 field trials in 29 studies. Of these field trials, 
41 treatments (from 13 studies) were a year or longer, and only 6 treatments from 2 studies were 
longer than 2 years. These data provide sufficient evidence to determine a significant (p = 0.01) 
effect over 1 year, and therefore, the impact is only estimated for the first year after application. 
More long-term field trials will be required before the longer term impact can be estimated with 
confidence for a GHG reporting method. Of the field trials, 32 percent were in rice, 34 percent in 
nonrice row crops, 5 percent were in grassland, and 30 percent in horticulture. We note that the 
effect size was the same in rice versus nonrice trials. The biochar field trial results were analyzed 
using robust variance estimations (Hedges et al., 2010) with random effects, including study as a 
random effect. 

Documentation for the no-till scaling factor can be found in van Kessel et al. (2012). The studies 
used in each meta-analysis are provided below. 
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3-A.6 Methane Flux for Nonflooded Soils 

3-A.6.1 Rationale for Method 
Agronomic activity typically reduces CH4 uptake in cropland soils by 70 percent or more (Mosier et 
al., 1991; Robertson et al., 2000; Smith et al., 2000). This is a significant process influencing the 
concentration of CH4 in the atmosphere. The chapter provides a Tier 3 method for CH4 uptake in 
nonflooded mineral soils as defined by IPCC. For drained organic soils that are used for crop 
production or grazing, there may be no net flux annually or possibly a net emission of CH4 to the 
atmosphere (Drösler et al., 2013; Tan et al., 2020). This guidance has adopted the IPCC Tier 1 
method to estimate the CH4 flux from drained wetlands (Drösler et al., 2013). 

3-A.6.2 Technical Documentation 
Soil CH4 flux rates are affected by land use and environmental factors such as soil type, water 
content, and temperature. Among natural vegetation types, those dominated by woody vegetation 
have higher rates of CH4 uptake than those characterized by herbaceous vegetation such as 
grassland. Conversion to cropland reduces the sink strength (Robertson et al., 2000; McDaniel et al., 
2019). The CH4 flux rates and attenuation of those rates depend on the land use and were derived 
from previous published studies.  

Average CH4 flux rates for natural vegetation are derived from a dataset compiled by Del Grosso et 
al. (2000) combined with McDaniel et al. (2019). Studies selected met two criteria: (a) day of the 
year was provided in the study, and (b) measurements were made for more than 1 month. There 
were 13 sites with 1,600 observations for grassland and 6 sites with 80 observations for forest land 
that met these criteria. A linear mixed-effect model was fit using daily observations, with day of 
year and climate as potential fixed effects, and a random effect of site. The model also included a 
quadratic term of day of year to capture seasonal patterns. For model parsimony and simplicity in 
estimating uncertainty, separate models were derived for forest and grassland. For forestland, 
there appeared to be differences in fluxes between forest in dry versus wet climates; however, with 
limited studies in dry forests the difference was not significant at the 0.05 alpha level. Almost all of 
the grassland sites occurred in dry climates so this variable was not tested in the grassland model. 
To estimate an overall flux rate, the linear mixed-effect model was applied to estimate fluxes for 
each day of the year and then summed to produce the annual fluxes. Uncertainty is associated with 
the model parameters and random effect for site. 

Management factors are scalars that are used to adjust the methane flux from the natural 
vegetation for annual cropland management. Response ratios were derived by dividing the 
methane flux for annual cropland management by the methane flux for native vegetation. A linear 
mixed-effect model could not be developed for the management factors due to limited studies 
comparing annual cropland to forest land and grassland. Instead, the estimated impact of annual 
cropland management was based on the average of the site level response ratios, along with the 
standard deviation of the ratios to derive a probability density function for error propagation. Data 
for conversion from natural vegetation to perennial cropland were also analyzed, but no clear 
patterns were apparent. Therefore, management factor for conversions from natural vegetation to 



Chapter 3: Quantifying Greenhouse Gas Sources and Sinks in Cropland and Grazing Land Systems 

3-120 

perennial cropland are assumed to be negligible and a factor value of 1 is assigned in the 
calculation. 

Drained wetlands will tend to have no net flux or emissions of CH4 following conversion to cropland 
or grazing land (Drösler et al., 2013; Tan et al., 2020). The CH4 emission factors for drained 
wetlands are from the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas 
Inventories: Wetlands (Drösler et al., 2013). 

The studies used in the meta-analysis for the base CH4 flux for natural vegetation and management 
factors are provided below: 
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• Bárcena T.G., L. D’Imperio, P. Gundersen, L. Vesterdal, A. Priemé, J.R. Christiansen. 2014.
Conversion of cropland to forest increases soil CH4 oxidation and abundance of CH4
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• Boeckx P., O. Van Cleemput, I. Villaralvo. 1997. Methane oxidation in soils with different
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• Borken W., Y.J. Xu, F. Beese F. 2003. Conversion of hardwood forests to spruce and pine
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66.
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226–227:348–53.
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forests and grasslands. Soil Science Society of America Journal, 77:850–855.

• Del Grosso S., W.J. Parton, A.R. Mosier, D.S. Ojima, C.S. Potter, W. Borken, R. Brumme, et al.
2000. General CH4 oxidation model and comparisons of CH4 oxidation in natural and
managed systems. Global Biogeochemical Cycles,14(4): 999-1019.

• Dobbie K.E., K.A. Smith, A. Prieme´, S. Christensen, A. Degorska, P. Orlanski. 1996. Effect of
land use on the rate of methane uptake by surface soils in Northern Europe. Atmospheric
Environment, 30:1005–1011.

• Galbally I., C.P. Meyer, Y-Pi. Wang, W. Kirstine. 2010. Soil–atmosphere exchange of CH4, CO,
N2O and NOx and the effects of land-use change in the semiarid Mallee system in
Southeastern Australia. Global Change Biology, 16:2407–2419.

• Goldman M.B., P.M. Groffman, R.V. Pouyat, M.J. McDonnell, S.T.A Pickett. 1995. CH4 uptake
and N availability in forest soils along an urban to rural gradient. Soil Biology and
Biochemistry, 27:281–286.

• Grover S.P.P., S.J. Livesley, L.B. Hutley, H. Jamali, B. Fest, J. Beringer, K. Butterbach-Bahl, et al.
2012. Land use change and the impact on greenhouse gas exchange in north Australian
savanna soils. Biogeosciences, 9:423–437.
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on the activity and diversity of methane oxidizing bacteria in forest soils. Soil Biology and 
Biochemistry, 33:1613–1623.  
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the Aral Sea Basin. Global Change Biology, 14:2454–2468.  
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3-A.7 Methane Emissions From Flooded Rice Cultivation 

3-A.7.1 Rationale for Method 
The methods were chosen to minimize uncertainty. They differ from U.S. EPA (2020) inventory 
methods which do not currently account for recent research in the United States used in the 
development of a Tier 2 method (Linquist et al., 2018) for specific regions of the Mid-South and 
California (see figure 3-5). The country-specific factors derived from this study provide more 
accurate estimates of emissions than Tier 1 methods. There are a number of other possibilities for 
estimating GHG emissions from flooded rice systems. Notably, process-based models, which are 
considered Tier 3 methods, can be used to quantify GHG emissions, such as the DNDC (e.g., Zhang et 
al., 2011) and DayCent models (Cheng et al., 2013). It is anticipated that process-based models may 
be further tested and calibrated at entity scales across the United States and possibly adopted for 
application in a future version of these methods. 
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3-A.7.2 Technical Documentation 
Linquist et al. (2018) developed the basis for the Tier 2 method in this report. This method is 
applied to counties with rice production in the 2016 NASS Crop Data Layer, which includes counties 
in Arkansas, California, Louisiana, Mississippi, Missouri, and Texas. Additionally, counties that were 
within two counties of the originally identified rice production counties were included in the Tier 2 
method. In any State that had more than 80 percent of its counties identified, the entire State was 
included in the Tier 2 method. In summary, Tier 2 methodology can be used in all counties in 
California, Arkansas, Louisiana, and Mississippi and select counties in Missouri and Texas (see 
figure 3-5 and table 3A-6.). 

Table 3A-6. Counties in Texas and Missouri That Use the Tier 2 Methodology 

Missouri 

Barry, Bollinger, Butler, Cape Girardeau, Carter, Christian, Crawford, Dent, Douglas, Dunklin, 
Franklin, Gasconade, Howell, Iron, Jefferson, Lawrence, Lincoln, Madison, McDonald, 
Mississippi, Montgomery, New Madrid, Newton, Oregon, Ozark, Pemiscot, Perry, Phelps, Pike, 
Reynolds, Ripley, Scott, Shannon, St. Charles, St. Francois, St. Louis, St. Louis, Ste. Genevieve, 
Stoddard, Stone, Taney, Texas, Warren, Washington, Wayne 

Texas 

Anderson, Angelina, Aransas, Atascosa, Austin, Bastrop, Bee, Bell, Bexar, Blanco, Bosque, 
Bowie, Brazoria, Brazos, Brooks, Burleson, Burnet, Caldwell, Calhoun, Cameron, Camp, Cass, 
Chambers, Cherokee, Collin, Colorado, Comal, Cooke, Coryell, Dallas, Delta, Denton, DeWitt, 
Duval, Ellis, Erath, Falls, Fannin, Fayette, Fort Bend, Franklin, Freestone, Frio, Galveston, 
Goliad, Gonzales, Grayson, Gregg, Grimes, Guadalupe, Hamilton, Hardin, Harris, Harrison, 
Hays, Henderson, Hidalgo, Hill, Hood, Hopkins, Houston, Hunt, Jackson, Jasper, Jefferson, Jim 
Hogg, Jim Wells, Johnson, Karnes, Kaufman, Kenedy, Kleberg, La Salle, Lamar, Lampasas, 
Lavaca, Lee, Leon, Liberty, Limestone, Live Oak, Llano, Madison, Marion, Matagorda, 
McLennan, McMullen, Medina, Milam, Montgomery, Morris, Nacogdoches, Navarro, Newton, 
Nueces, Orange, Palo , into, Panola, Parker, Polk, Rains, Red River, Refugio, Robertson, 
Rockwall, Rusk, Sabine, San Augustine, San Jacinto, San Patricio, San Saba, Shelby, Smith, 
Somervell, Starr, Tarrant, Titus, Travis, Trinity, Tyler, Upshur, Van Zandt, Victoria, Walker, 
Waller, Washington, Wharton, Willacy, Williamson, Wilson, Wise, Wood, Zapata 

Baseline emission factors for the Tier 2 method represent standard practices for the two primary 
rice production regions in the United States, namely the Mid-South (Arkansas, Louisiana, 
Mississippi, Missouri, and Texas) and California. Studies from these 2 regions were analyzed and 
included 27 observations from 17 studies in the Mid-South and 13 observations from 7 studies in 
California (Linquist et al., 2018). Standard practices in the Mid-South include rotating rice with low-
residue-producing crops, drill seeding (continuously flooded from 3-6 leaf stage to final drain), no 
organic amendment, and no sulfur amendment. Standard practices in California include continuous 
rice (i.e., no crop rotation), straw incorporation and winter flooding, water seeding, no organic 
amendment, and no sulfur amendment. Average seasonal CH4 emissions for the baseline conditions 
were 194 kg CH4/ha/season in the Mid-South and 218 kg CH4/ha/season in California (Linquist et 
al., 2018). The percent of clay in soils was found to have a significant impact on the emissions and is 
used to adjust the daily baseline emission factor.  

Differences in CH4 emissions between the baseline and other management practices are estimated 
with scaling factors to adjust the baseline emission factor for the effects of other water 
management practices other than continuous flooding (during the cultivation period), sulfur 
amendments, residue amounts, and seeding method (California only). All rice in the United States is 
irrigated, and drydown events have been found to influence CH4 emissions (Linquist et al., 2018). 
The scaling factors of single and multiple aerations differ from each other but are the same for both 
geographical regions (Linquist et al., 2018). The scaling factor used to estimate the effect of sulfur 
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amendments varies depending on the amount of sulfur added. For every 30 kg S/ha added, CH4 
emissions are reduced by 4 percent (Linquist et al., 2018).  

Residue left in the field from a previous crop can increase CH4 emissions during the production 
season because residue provides carbon substrate for methanogenesis during the flooded season 
(Yan et al., 2005). The two rice growing regions in the Tier 2 method have different baseline residue 
managements. In the Mid-South, a typical rotation would include a year of a low-residue crop such 
as soybeans prior to rice. Soybeans leave less residue and decompose at a faster rate than cereal 
residues (Xu et al., 2017). A deviation from the baseline management with rice production followed 
by another season of rice in the Mid-South was found to increase CH4 by 116 percent, which is a 
scaling factor of 2.16 (Linquist et al., 2018). In California, baseline management includes rice 
residue incorporation after harvest and then flooding. A low-residue crop would be a deviation 
from the baseline of a relatively high-residue production crop, such as rice, and would decrease CH4 
by 54 percent or a scaling factor of 0.46 (Linquist et al., 2018). Differences in rotation practice 
influence emissions in both regions—but in the opposite direction because the typical rotation in 
California is to have a relatively high-residue crop before rice, while in the Mid-South it is more 
common to have a low-residue crop before rice production in a rotation. 

Water seeding is the typical method for planting in California, representing the standard baseline 
condition. However, drill seeding is another option and will reduce CH4 emissions, on average, by 
60 percent, which is a scaling factor of 0.40 (Linquist et al., 2018). The scaling factor for seeding 
method in California can only be applied if the scaling factor for litter conditions is equal to 1. 
Limited data are available on water seeding impact on CH4 in the Mid-South; it is likely an 
uncommon practice in the region.  

3-A.8 Carbon Dioxide From Liming 

3-A.8.1 Rationale for Method 
Addition of carbonate limes to soils, i.e., limestone and dolomite, is typically thought to generate 
CO2 emissions to the atmosphere (de Klein et al., 2006), but prevailing conditions in U.S. 
agricultural lands lead to some CO2 uptake because a significant amount of lime is dissolved in the 
presence of H2CO3. A method developed by West and McBride (2005) addresses these dynamics 
and has been adopted for the reporting of CO2 emissions from carbonate lime applications in the 
United States. This method is also used by the U.S. EPA for national-scale reporting of CO2 emissions 
from agricultural lands (U.S. EPA, 2020). 

3-A.8.2 Technical Documentation 
The country-specific factors are based on a study by West and McBride (2005). Since CaCO3 
contains 12 percent carbon, an application of 1 kg CaCO3 contains 0.12 kg carbon. It is assumed that 
62 percent (0.8 kg) of carbonate lime dissolution occurs in presence of carbonic acid, generating 
HCO3- and removing 0.27 kg CO2-C from the atmosphere. The remaining 38 percent (0.4 kg) of the 
dissolution occurs in the presence of nitric acid and generates 0.17 kg CO2-C emissions to the 
atmosphere. The amount of lime dissolution by carbonic vs. nitric acid is highly uncertain, ranging 
from 24 to 100 percent dissolution with carbonic acid. Approximately half of the calcium ions 
released in this reaction are leached through the soil profile, although this value is highly uncertain 
and can range from nearly 0 to 100 percent. Leaching of calcium and other cations removes HCO3- 
and other anions from the soil profile. The HCO3- ions remaining in the profile will lead to an 
emission of 0.27 kg CO2-C to the atmosphere. There is also precipitation of calcium carbonate in the 
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ocean margin, leading to an emission of 0.05 kg CO2-C to the atmosphere. The net balance is 0.22 kg 
CO2-C of emissions, or 0.059 kg CO2 per 1 ton of crushed of limestone applied to soils. 

This method makes similar assumptions about the fate of dolomite. Since crushed dolomite 
(MgCa(CO3)2) contains 13 percent carbon, an application of 1 kg CaCO3 contains 0.13 kg C. Dolomite 
lime dissolution is assumed to have the same proportion as crushed limestone, which is 62 percent 
(0.8 kg) in the presence of carbonic acid, generating HCO3- and removing 0.30 kg CO2-C from the 
atmosphere. The remaining 38 percent (0.4 kg) of the lime is dissolved in the presence of nitric 
acid, generating 0.18 kg CO2-C of emissions to the atmosphere. As with crushed limestone, this 
method assumes that approximately half of the calcium and magnesium ions released in this 
reaction are leached through the soil profile with HCO3- and other anions, but this is highly 
uncertain, ranging almost from 0 to 100 percent. There will be an emission of 0.30 kg CO2-C to the 
atmosphere associated with the remaining HCO3- in the soil. There is also precipitation of calcium 
carbonate in the ocean margin, leading to an emission of 0.05 kg CO2-C to the atmosphere. The net 
balance is 0.235 kg CO2-C of emissions, or 0.064 kg CO2 per 1 ton of crushed of limestone applied to 
soils. 

3-A.9 Non-CO2 Emissions From Biomass Burning 

3-A.9.1 Rationale for Method 
Non-CO2 GHG emissions from biomass burning include CH4 and N2O. Carbon monoxide and NOx are 
also emitted and are precursors of GHGs (i.e., release of these gases leads to GHG formation 
elsewhere). Carbon dioxide is also emitted but is not addressed for crop residue or grassland 
burning because the carbon is reabsorbed from the atmosphere in new growth of crops or grasses 
within an annual cycle. However, CO2 emissions are estimated for trees in agroforestry, tree crops, 
and shrubs by calculating the loss of woody biomass using methods in section 3.2.1. 

There has been limited development and testing of models or empirical methods for estimating 
non-CO2 GHG emission from U.S. biomass burning. Consequently, country-specific data are limited 
on the amount of non-CO2 GHG emissions that could be used to derive country-specific emission 
factors for a Tier 2 method. Therefore, this guidance has adopted the IPCC Tier 1 method as 
described by Aalde et al. (2006).  

3-A.9.2 Technical Documentation 
See Aalde et al. (2006) for the technical documentation on this method. 

3-A.10 CO2 From Urea Fertilizer Applications 

3-A.10.1 Rationale for Method 
Urea fertilizer application to soils contributes CO2 emissions to the atmosphere. The CO2 
incorporated into the urea during the fertilizer production process comes from fossil fuel sources in 
the U.S. fertilizer plants. The CO2 captured during the production process is considered an 
emissions removal in the manufacturer’s reporting, so its release following urea fertilization on 
soils is reported by the entity managing the cropland or grazing land. If manufacturers do not 
estimate CO2 capture during urea production and include the recaptured CO2 as an emission, there 
is no need for a farm-scale entity to report release. 
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The Tier 1 method has been adopted from IPCC guidelines (de Klein et al., 2006). No other methods 
have been developed or tested sufficiently, and there are insufficient measurement data to derive a 
country-specific emission factor. 

3-A.10.2 Technical Documentation 
See de Klein et al. (2006) for the technical documentation on this method.  
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Appendix 3-B: Summary of Research Gaps for Cropland 
and Grazing Land Management 
This appendix discusses research gaps associated with cropland and grazing land management 
impacts on soil carbon stock changes and GHG emissions. The list is not necessarily exhaustive but 
highlights some key gaps that will need further research before there is sufficient evidence for 
additional criteria to be included in the methodology. In general, most prior experimental efforts 
have focused on components of GHGs, but few studies have been conducted on total GHG budgets to 
include CO2, N2O, and CH4 in combination, which is needed to quantify interacting effects on the net 
emissions of these gases (Liebig et al., 2010). In addition, limited research has been conducted to 
address the influence of catastrophic weather events on GHG emissions, such as major floods, 
tornadoes, and hurricanes. 

3-B.1 Biomass Carbon Stock Changes
The following data collection would improve the estimation of woody trees in agroforestry and 
perennial crop system. 

• More data on allometric relationships for woody species grown in open environments
including agroforestry and perennial woody crop systems.

3-B.2 Soil Carbon Stocks
The following processes and practices require further study to improve fundamental understanding 
or fill data gaps in the carbon inventory methods.  

• Improved mechanistic understanding and ability to quantify the fate of SOC with transport
and sedimentation following erosion events;

• Improved mechanistic understanding of soil carbon dynamics in the subsoil horizons to
extend methods for estimating SOC stock changes in mineral soils below a 30 cm depth;

• Further research on the variation in types and residence times of biochar amendments in
different soils and climates, in addition to biochar impact on other GHG emissions (N2O and
CH4), priming of soil organic matter decomposition, crop growth, inorganic carbon, and the
movement of biochar in the landscape over time;

• Further research on management impacts influencing soil C stocks in specialty crop
systems;

• Further research evaluating the impact of enhancing rock weathering (e.g., amending soils
with powdered basalt) on agricultural production and the environment, as well as
development of methods to quantify the removal rate for CO2;

• Data on long-term responses of SOC to variation in stocking rate, grazing method (i.e.,
continuous, rotational, short-duration rotational, ultra-high stocking density, and adaptive
management approaches), and vegetation composition (i.e., forb and grass mixtures, cool- 
and warm-season grass mixtures, grass and legume mixtures, grass and woody mixtures,
and plant architecture types), and whether these responses are mediated by different soil
types, climatic conditions, botanical compositions, grazing methods, fertilizer regimes, and
other factors;
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• Improved ability to quantify the influence of agroforestry, woody plant encroachment, and 
perennial woody crops on SOC stocks; 

• Improved modeling of SOC dynamics as the process-basis for the formation and fate of soil 
organic matter is better understood through both experimental field and laboratory 
research and incorporated into models; 

• Expanded monitoring of SOC stocks and stock changes in croplands and grazing lands, such 
as a national monitoring network with repeated sampling of SOC stocks at permanent 
locations (e.g., Spencer et al., 2011). The observational data could be used to inform model 
selection and parameterization as part of a system for entity- and national-scale reporting 
of SOC stock changes and GHG emissions in the United States (e.g., Ogle et al., 2020); 

• More studies to determine the net impact of agricultural management on GHG emissions 
with experiments measuring SOC stocks combined with other GHGs, particularly N2O and 
CH4. These studies could even be expanded to address other impacts of agriculture such as 
nutrient leaching and other gaseous losses that can affect water and air quality; 

• More research on the interactions between animals and livestock with the cropland and 
grazing land management systems, including how interdependent factors such as forage 
quality, maturity, total intake, and supplemental feeds impact both animal emissions and 
soil emissions/fluxes. 

3-B.3 Soil Nitrous Oxide Emissions 
The following practices have, in some studies, significantly affected N2O emissions, but need 
additional research across different soil types and climate: 

• Development of a set of geographically stratified experimental sites at which factors known 
to affect agronomic N2O emissions could be tested in the context of different management 
systems;  

• Capacity of spatially precise fertilizer application technology (variable rate applicators) to 
lower N2O fluxes (both direct and indirect) and increase NUE; 

• Further study of the effect of pressurized and nonpressurized irrigation systems on soil N2O 
emissions; 

• Further research on management impacts influencing soil N2O emissions in specialty crop 
systems; 

• Effects of banded nitrogen fertilizer applications, shown in some studies to increase NUE 
and in others to increase N2O emissions; 

• Further evaluation of fertigation effects on soil N2O emissions and other N losses leading to 
indirect N2O emissions; 

• The generalizability of different fertilizer formulations on N2O emissions, in particular for 
urea vs. anhydrous ammonia vs. injected solutions; 

• Long-term experiments, particularly field trials, quantifying impact of biochar amendments, 
tillage, cover crops, irrigation, manure amendments and other cropland management 
practices on soil N2O;  

• More research on the responses of soil N2O emissions to variations in stocking rates, grazing 
methods (continuous, rotational, short-duration rotational, and ultra-high stocking density), 
and vegetation composition (forb and grass mixtures, cool- and warm-season grass 
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mixtures, grass and legume mixtures, grass and woody mixtures, and plant architecture 
types), both individually and in combinations; and 

• Improved estimates of indirect emissions, and in particular the percentage of nitrogen that 
is lost from a field through volatilization or leaching/runoff and later converted to N2O in 
downstream and downwind ecosystems. Additional study on practices that can reduce NO3- 
losses as well as practices that can reduce NH3 and NOx losses. 

Research is also needed to improve modeling and empirical quantification of soil N2O emissions in 
order to provide estimates of N2O fluxes that integrate multiple management practices 
simultaneously: 

• Further development and validation of quantitative simulation models predicting N2O 
fluxes in response to differing management practices, with particular respect to rate, timing, 
placement, and formulation of added fertilizers, both synthetic and organic; irrigation 
method (pressurized and nonpressurized systems); tillage type and intensity; residue 
management; fertigation; and biochar amendments;  

• Conducting model inter-comparisons to accelerate the development of the next generation 
of models, by comparing various representations of processes that drive N2O emissions and 
identifying superior approaches for estimating emissions and incorporating those methods 
into new models; 

• More data on seasonal and annual N2O emissions, including emissions during the non-
growing season and in particular winter and freeze-thaw periods; 

• Development of standardized methodologies and creation of new technologies for rapid 
assessment of N2O fluxes in the field while also improving quantification of spatial and 
temporal variation of N2O emissions in different cropping systems and landscapes to 
provide a more accurate assessment of seasonal and annual emissions; 

• Better understanding of the sources of N2O in soils (e.g., nitrification vs. denitrification) and 
consequences for feedbacks among adaptive management, soil physical and biological 
attributes, and SOC dynamics; and 

• Long-term monitoring of N2O emissions on a statistically based sample of farms throughout 
the United States to support model calibration and reduce uncertainty in estimated 
emissions from croplands and grazing lands (Ogle et al., 2020). This network could be 
combined with atmospheric N2O concentration data and inverse model predictions of N2O 
fluxes to further constrain and reduce uncertainty in emission predictions. 

3-B.4 Methane Flux in Nonflooded Soils 
Soil CH4 flux in nonflooded soils is typically dominated by uptake and it is known to decrease by 
about 70 percent upon conversion of long-standing natural vegetation to agricultural management 
(Mosier et al., 1991; Robertson et al., 2000; Smith et al., 2000; McDaniel et al., 2019). However, CH4 

flux rates for soils under natural vegetation are not well known for all climates and soils, so 
additional measurements would be useful to reduce uncertainty in the method. Moreover, 
additional research is needed to further evaluate the impact of perennial cropland management on 
methane fluxes. 

Further development and testing of process-based simulation models capable of accurately 
predicting CH4 fluxes for nonflooded soils would also be an improvement. Process-based models 
would likely better generalize effects and possibly improve assessments that evaluate the 
enhancement of sink potential of cropland and grazing land soils for reducing greenhouse gas 
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concentrations in the atmosphere. Furthermore, there is limited research on the effect of grazing 
land management on CH4 oxidation, although variation in stocking rates, grazing methods, and 
associated practices may have an influence on CH4 fluxes from nonflooded soils. 

3-B.5 Flooded Rice Cultivation 
The transition from rice CH4 emissions calculations based on Asian systems to those based on U.S. 
systems is an important step forward in this version of the methods report. Contrary to Asian 
systems, U.S. systems use a single growing season followed by a distinct winter season vs. multiple 
crop seasons per year, direct or water seeding vs. transplanting, a high degree of mechanization, 
larger land holdings, and different cultivars. The research underlying the Tier 2 method were all 
from U.S. studies published on or before 2014 and found in Linquist et al. (2018). However, Linquist 
et al. identified gaps that require further research:  

• Improved understanding of ratoon cropping and strategies to reduce emissions from these 
systems; 

• The impacts of additional seeding method on emissions, specifically water seeding in 
regions that are dominated by drill seeding;  

• Research on rice varietal effects on emissions (While many studies have shown varietal 
differences in how much CH4 is emitted, the challenge is that by the time these differences 
are understood, the variety may no longer be widely used); and  

• Improved understanding of how multiple practices influence emissions.  

All data presented in Linquist et al. (2018) were used to quantify scaling factors, leaving no 
validation data to test the scaling factors. New studies published since 2014 (Balaine et al., 2019; 
Kongchum et al., 2020; Reba et al., 2019; Runkle et al., 2019) provide additional opportunity to 
improve scaling factors and provide validation.  

Furthermore, more research is needed to further calibrate process-based models and evaluate their 
performance. DayCent is currently used to estimate CH4 emissions in the U.S. GHG Inventory (U.S. 
EPA, 2020), but more testing is needed before it can be used for finer-scale estimation of CH4 

emissions from rice production on land parcels. 

Until recently, emissions data for rice systems were generated using chamber studies. Recent 
studies using eddy covariance (EC) equipment are now available (Reba et al., 2019; Runkle et al., 
2019). EC systems allow for an automated, field-integrated measure of the flux of interest, but are 
restricted to larger field sizes. As such, EC systems are typically deployed on farms in collaboration 
with producers rather than on experiment stations. Fluxes that are measured with EC systems 
typically include CO2, H2O, and CH4 in rice. Recent developments in N2O devices using EC show 
promise for including this trace gas in future research efforts. Improving our understanding of 
these different collection methods is an area where more research is needed.  

The following practices have significantly affected CH4 or N2O emissions but require further side-
by-side comparisons with experimental designs across different soil types and climates within the 
United States to further refine scaling factors and improve modeling efforts. 

• It is well known that rice straw management and winter flooding influences CH4 emissions. 
However, further study is needed to reduce uncertainty in emission rates for the 
precultivation period.  
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• Limited data on nitrogen placement suggests that deep placement of fertilizer reduces CH4

emissions. However, more research is needed to confirm the findings to determine
differences in emissions due to fertilizer placement.
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Appendix 3-C: GHG Emissions Intensity 
GHG emissions intensity (GHGI) is another metric for evaluating trends in emissions related to 
production. A GHGI metric incorporates production data to quantify the amount of emission per 
unit of production. One may work towards lowering GHGI via several pathways, including reducing 
GHG emissions, enhancing carbon stocks, or increasing production relative to the amount of GHG 
emissions (note that increasing production may not always decrease emissions).  

Equation 3C-1 shows a method for estimating a partial GHGI metric accounting for annual 
emissions arising within an individual land parcel. Emissions may then be aggregated across all 
parcels.  

Equation 3C-1: GHGI Metric 

𝐺𝐺𝐻𝐻𝐺𝐺𝐻𝐻 = (∆𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + ∆𝑇𝑇𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛𝑝𝑝𝑚𝑚𝑏𝑏𝑏𝑏 + ∆𝐶𝐶𝑏𝑏𝑚𝑚𝑎𝑎𝑏𝑏𝑛𝑛𝑏𝑏𝑏𝑏 + N2O𝑑𝑑𝑏𝑏𝑚𝑚𝑝𝑝𝑏𝑏𝑡𝑡 + N2O𝑏𝑏𝑛𝑛𝑑𝑑𝑏𝑏𝑚𝑚𝑝𝑝𝑏𝑏𝑡𝑡 + CH4𝑛𝑛𝑓𝑓𝑏𝑏𝑏𝑏 + CH4𝑑𝑑𝑏𝑏𝑏𝑏
+ CH4𝑚𝑚𝑏𝑏𝑏𝑏𝑝𝑝 + ∆𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝 + 𝐺𝐺𝐻𝐻𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐼𝐼𝑚𝑚𝑛𝑛𝑏𝑏𝑛𝑛𝑎𝑎 + 𝐶𝐶𝐼𝐼𝑚𝑚𝑝𝑝𝑏𝑏) ÷ 𝑌𝑌 

Where: 
GHGI = greenhouse gas emissions intensity (metric tons CO2-eq/metric tons dry 

matter crop yield, metric tons CO2/kg carcass yield, metric tons CO2/kg fluid 
milk yield from the entity’s operation) 

ΔCbiomass = total annual change in biomass carbon stock (metric tons CO2-eq) 
ΔTCmineral = annual change in mineral soil organic carbon stock plus biochar 

amendments (metric tons CO2-eq) 
ΔCorganic = annual CO2 equivalent emissions from soil organic carbon change in organic 

soils, i.e., Histosols (metric tons CO2-eq) 
N2Odirect = annual direct soil N2O emissions for land parcel (metric tons CO2-eq) 
N2Oindirect = annual indirect soil N2O emissions (metric tons CO2-eq) 
CH4nfms = CH4 flux for nonflooded mineral soils (metric tons CO2-eq) 
CH4dos = CH4 flux for drained organic soils (metric tons CO2-eq) 
CH4rice = annual CH4 emissions from rice cultivation (metric tons CO2-eq) 
ΔClime = annual change in soil carbon stocks from lime application 

(metric tons CO2-eq)  
GHGbiomassburning =  annual emissions of GHGs or precursors due to biomass burning (metric 

tons CO2-eq) 
Curea =  annual release of carbon from urea added to soil (metric tons CO2-eq) 
Y =  total yield of crop (metric tons dry matter crop yield/year), meat 

(kg carcass yield/year) or milk production (kg fluid milk yield/year) 

A full GHG intensity calculation is beyond the scope of this chapter. Such a calculation could include 
life cycle emissions related to provision of energy and materials imported into the production 
system, including for example, production of fertilizer, other agrichemicals, organic amendments, 
seed, machinery, and irrigation water, as well as on-farm energy use. The GHGI can also be 
estimated with emissions data from animal agriculture and forestry-related activities if those are 
included within the operation. However, it is important to note that only one product can be 
evaluated in a single estimation, unless the products are converted into a unit of equivalency, such 
as caloric content, or emissions are allocated to the various products in proportion to their 
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economic value. This metric produces complementary information to the absolute emission data 
that may be incorporated into management and policy plans. 
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